Aufgabe 2.7: Kohärenzbandbreite

Aus LNTwww
Wechseln zu:Navigation, Suche

Verzögerungs–Leistungsdichtespektrum und Frequenzkorrelationsfunktion

Für das Verzögerungs–Leistungsdichtespektrum wählen wir einen exponentiellen Ansatz. Mit ${\it \Phi}_0 = {\it \Phi}_{\rm V}(\tau = 0)$ gilt:

$$\frac{{\it \Phi}_{\rm V}(\tau)}{{\it \Phi}_{\rm 0}} = {\rm exp}\left ( -\tau / \tau_0 \right ) \hspace{0.05cm}.$$

Die Konstante $\tau_0$ lässt sich entsprechend der oberen Grafik aus der Tangente im Punkt $\tau = 0$ ermitteln. Beachten Sie, dass ${\it \Phi}_{\rm V}(\tau)$ die Einheit $[1/\rm s]$ aufweist. Weiter gilt:

  • Die Wahrscheinlichkeitsdichte $f_{\rm V}(\tau)$ hat gleiche Form wie ${\it \Phi}_{\rm V}(\tau)$, ist jedoch auf die Fläche 1 normiert.
  • Die mittlere Verzögerungszeit (engl. Average Excess Delay) $m_{\rm V}$ ist gleich dem linearen Erwartungswert $E[\tau]$ und lässt sich aus der WDF $f_{\rm V}(\tau)$ bestimmen.
  • Die Mehrwegeverbreiterung (engl. Multipath Spread) $\sigma_{\rm V}$ gibt die Standardabweichung (Streuung) der Zufallsgröße $\tau$ an. Im Theorieteil verwenden wir hierfür auch die Bezeichnung $T_{\rm V}$.
  • Die dargestellte Frequenzkorrelationsfunktion $\varphi_{\rm F}(\Delta f)$ kann als die Fouriertransformierte des Verzögerungs–Leistungsdichtespektrum ${\it \Phi}_{\rm V}(\tau)$ berechnet werden:
$$\varphi_{\rm F}(\Delta f) \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$$
  • Die Kohärenzbandbreite $B_{\rm K}$ ist der $\Delta f$–Wert, bei dem die Frequenzkorrelationsfunktion $\varphi_{\rm F}(\Delta f)$ auf den halben Betrag abgefallen ist.


Hinweise:

  • Die Aufgabe gehört zum Themengebiet des Kapitels Das GWSSUS–Kanalmodell
  • Benötigt werden Kenntnisse zur Momentenberechnung von Zufallsgrößen aus dem Buch „Stochastische Signaltheorie”.
  • Außerdem kann folgende Fouriertransformation als gegeben vorausgesetzt werden:
$$x(t) = \left\{ \begin{array}{c} {\rm exp}(- \lambda \hspace{0.05cm}\cdot \hspace{0.05cm} t)\\ 0 \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.35cm} {\rm f\ddot{u}r} \hspace{0.15cm} t \ge 0 \\ \hspace{-0.35cm} {\rm f\ddot{u}r} \hspace{0.15cm} t < 0 \\ \end{array} \hspace{0.4cm} {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.4cm} X(f) = \frac{1}{\lambda + {\rm j} \cdot 2\pi f}\hspace{0.05cm}.$$


Fragebogen

1

Wie lautet die Wahrscheinlichkeitsdichte $f_{\rm V}(\tau)$ der Verzögerungszeit?

$f_{\rm V}(\tau) = \exp {(–\tau/\tau_0)}$.
$f_{\rm V}(\tau) = 1/\tau_0 \cdot \exp {(–\tau/\tau_0)$,
$f_{\rm V}(\tau) = {\it \Phi}_0 \cdot \exp {(–\tau/\tau_0)}$.

2

Bestimmen Sie die mittlere Verzögerungszeit für $\tau_0 = 1 \ \rm \mu s$.

$m_{\rm V} \ = \ $

$\ \rm \mu s$

3

Welcher Wert ergibt sich für die Mehrwegeverbreiterung mit $\tau_0 = 1 \ \rm \mu s$?

$\sigma_{\rm V} \ = \ $

$\ \rm \mu s$

4

Multiple-Choice

correct
false

5

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)