Aufgabe 1.2Z: 3D–Darstellung von Codes
Codes zur Fehlererkennung bzw. Fehlererkorrektur lassen sich sehr anschaulich im n–dimensionalen Raum darstellen. Wir beschränken uns hier auf binäre Codes der Länge n = 3:
- $$\underline{x} \hspace{-0.15cm} = \hspace{-0.15cm} (x_{1}, x_{2}, x_{3}) \hspace{0.1cm} \in \hspace{0.1cm}{\rm GF}(2^3) \hspace{0.05cm},\\ x_i \hspace{-0.15cm} \in \hspace{-0.15cm} \{0, 1 \}\hspace{0.05cm},\hspace{0.2cm} i = 1, 2, 3\hspace{0.05cm}.$$
Allgemein gilt bei der Blockcodierung:
- Das Informationswort u = $(u_{1}, u_{2}, ... , u_{k})$ wird eindeutig in das Codewort x = $(x_{1}, x_{2}, ... , x_{n})$ überführt.
- Die Coderate beträgt R = k/n.
- Die Hamming–Distanz $d_{\rm H}$(x, x') zwischen zwei Codeworten x ∈ C und x' ∈ C gibt die Anzahl der Bitpositionen an, in denen sich x und x' unterscheiden.
- Die Minimaldistanz $d_{\rm min}$ = min [$d_{\rm H}$(x, x')] ist ein Maß für die Korrekturfähigkeit eines Codes.
- Es können e =$d_{\rm min}$ – 1 Fehler erkannt und t = ($d_{\rm min}$ – 1)/2 korrigiert werden. Die letzte Aussage gilt allerdings nur für ungerades $d_{\rm min}$ .
Hinweis: Die Aufgabe gehört zum Themengebiet von Zielsetzung_der_Kanalcodierung. Zusätzlich werden einige einfache Fragen zu eispiele_binärer_Blockcodes vorweg genommen.
Fragebogen
Musterlösung
$C_{1}$ und $C_{2}$ beschreiben tatsächlich Codes mit der Rate R = 2/3 und der Minimaldistanz $d_{\rm min}$ = 2 ⇒ Antwort 1 und 2.
In nebenstehender Grafik markieren die grünen Punkte den Code $C_{1}$ und die blauen Punkte den Code $C_{2}$. Beim angegebenen Code $C_{3}$ – ebenfalls mit Rate R = 2/3 – ist die minimale Distanz zwischen zwei Codeworten $d_{\rm min}$ = 1, zum Beispiel zwischen (0, 0, 0) und (1, 0, 0) oder auch zwischen (0, 1, 1) und (1, 1, 1).
(3)
(4)