Aufgabe 4.5: Ortskurve bei ZSB-AM
Wir betrachten ein ähnliches Übertragungsszenario wie in der Aufgabe 4.4:
- ein sinusförmiges Nachrichtensignal mit Amplitude $A_{\rm N} = 2 \ \text{V}$ und Frequenz $f_{\rm N} = 10 \ \text{kHz}$,
- ZSB-Amplitudenmodulation ohne Trägerunterdrückung mit Trägerfrequenz $f_{\rm T} = 50 \ \text{kHz}$.
Nebenstehend sehen Sie die Spektralfunktion $S_+(f)$ des analytischen Signals $s_+(t)$ . Berücksichtigen Sie bei der Lösung, dass das äquivalente Tiefpass-Signal auch in der Form
$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \phi(t)} $$
dargestellt werden kann, wobei $a(t) ≥ 0$ gelten soll. Für $\phi(t)$ ist der Wertebereich $–\pi < \phi(t) \leq +\pi$ zulässig und es gilt die allgemeingültige Gleichung:
$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Sie können Ihre Lösung mit dem Interaktionsmodul Ortskurve – Darstellung des äquivalenten Tiefpass-Signals überprüfen.
Fragebogen
Musterlösung
1. Verschiebt man alle Diraclinien jeweils um $f_{\rm T} = 50 \ \text{kHz}$ nach links, so liegen diese bei $–\hspace{-0.08cm}10 \ \text{kHz}$, $0$ und $+10 \ \text{kHz}$. Die Gleichung $s_{\rm TP}(t)$ lautet mit $\omega_{10} = 2 \pi \cdot 10 \ \text{kHz}$:
$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }$$
$$\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.$$
$$\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .$$
2. Obige Gleichung kann man nach dem Satz von Euler mit $T_0 = 1/f_{\rm N} = 100 \ \mu \text{s}$ wie folgt umformen:
$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .$$
Damit ist gezeigt, dass $s_{\rm TP}(t)$ für alle Zeiten $t$ reell ist. Für die gesuchten Zahlenwerte erhält man:
$$s_{\rm TP}(t = {\rm 10 \hspace{0.05cm} \mu s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm 2.176 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} \mu s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm 3 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} \mu s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 100 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm 1 \hspace{0.05cm} V}}}.$$
3. Definitionsgemäß gilt $a(t) = |s_{\rm TP}(t)|$. Damit erhält man folgende Zahlenwerte:
$$a(t = {\rm 25 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} \mu s}) \hspace{0.15 cm}\underline{= {\rm 3 \hspace{0.05cm} V}} , \hspace{4.15 cm}$$
$$a(t = {\rm 75 \hspace{0.05cm} \mu s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} \mu s})| \hspace{0.15 cm}\underline{= {\rm 1 \hspace{0.05cm} V}} .$$
4. Allgemein gilt für die Phasenfunktion:
$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}$$
Aufgrund der Tatsache, dass hier für alle Zeiten ${\rm Im}[s_{\rm TP}(t)] = 0$ ist, erhält man hieraus das Ergebnis:
- Falls ${\rm Re}[s_{\rm TP}(t)] > 0$ gilt, ist die Phase ist $\phi(t) = 0$.
- Dagegen gilt bei negativem Realteil: $\phi(t) = \pi$.
Wir beschränken uns hier auf den Zeitbereich einer Periode: $0 \leq t \leq T_0$. Im Bereich zwischen $t_1$ und $t_2$ liegt eine Phase von $180^\circ$ vor, ansonsten gilt $\text{Re}[s_{\rm TP}(t)] \geq 0$. Zur Berechung von $t_1$ kann das Ergebnis der Teilaufgabe (2) herangezogen werden:
$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\rm (entspricht}\hspace{0.2cm}210^\circ )$$
Daraus erhält man $t_1 = 7/12 · T_0 = 58.33 \ \mu \text{s}$. Durch ähnliche Überlegungen kommt man zum Ergebnis $t_2 = 11/12 · T_0 = 91.63 \ \mu \text{s}$.
Die gesuchten Werte sind somit $\phi(t = 25 \ \mu \text{s}) \; \underline { = 0}$ und $\phi(t = 75 \ \mu \text{s}) \; \underline { = 180^{\circ}}\; (= \pi)$.