Aufgabe 2.3: Sinusförmige Kennlinie

Aus LNTwww
Wechseln zu:Navigation, Suche

Sinusförmige Kennlinie

Wie betrachten ein System mit Eingang $x(t)$ und Ausgang $y(t)$. Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet.

Der Zusammenhang zwischen dem Eingangssignal $x(t)$ und dem Ausgangssignal $y(t)$ ist im Bereich zwischen $-\pi/2$ und $+\pi/2$ durch die folgende Kennlinie gegeben.

$$g(x) = \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \hspace{0.05cm}\text{...}$$

Der zweite Teil dieser Gleichung beschreibt dabei die Reihenentwicklung der Sinusfunktion. Als Näherungen für die nichtlineare Kennlinie werden in dieser Aufgabe verwendet:

$$g_1(x) = x\hspace{0.05cm},$$
$$ g_3(x) = x- x^{3}\hspace{-0.1cm}/6\hspace{0.05cm},$$
$$g_5(x) = x- x^3\hspace{-0.1cm}/{6}+x^5\hspace{-0.1cm}/{120}\hspace{0.05cm}.$$

Es wird stets das Eingangssignal $x(t) = A \cdot \cos(\omega_0 \cdot t)$ vorausgesetzt, wobei für die (dimensionslose) Signalamplitude die Werte $A = 0.5$, $A = 1.0$ und $A = 1.5$ zu betrachten sind.



Hinweise:

  • Die Aufgabe bezieht sich auf das Kapitel Nichtlineare Verzerrungen.
  • Die sich ergebenden Signalverläufe für $x(t)$ und $y(t)$ sind im Beispiel auf der Seite Beschreibung nichtlinearer Systeme grafisch dargestellt.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Alle hier abgefragten Leistungen beziehen sich auf den Widerstand $R = 1 \ \rm \Omega$ und haben somit die Einheit ${\rm V}^2$
  • Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
$$\cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha) \hspace{0.05cm}, $$
$$ \cos^5(\alpha) = {10}/{16} \cdot \cos(\alpha) + {5}/{16} \cdot \cos(3\alpha) + {1}/{16} \cdot \cos(5\alpha)\hspace{0.05cm}.$$


Fragebogen

1

Welchen Klirrfaktor $K$ erhält man mit der Kennliniennäherung $\underline{g_1(x)}$ unabhängig von der Amplitude $A$ des Eingangssignals?

$K \ = \ $

$\ \%$

2

Berechnen Sie den Klirrfaktor $K$ für das Eingangssignal $x(t) = A \cdot \cos(\omega_0 \cdot t)$ und die Näherung $\underline{g_3(x)}$.
Welche Werte ergeben sich für $A = 0.5$ und $A = 1.0$?

$A = 0.5\hspace{-0.08cm}:\ \ K \ = \ $

$\ \%$
$A = 1.0\hspace{-0.08cm}:\ \ K \ = \ $

$\ \%$

3

Wie lautet der Klirrfaktor für $\underline{A = 1.0}$ unter Berücksichtigung der Näherung $\underline{g_5(x)}$?

$K \ = \ $

$\ \%$

4

Welche der folgenden Aussagen treffen zu?
Hierbei bezeichnet $K$ den Klirrfaktor der Sinusfunktion $g(x)$, während $K_{\rm g3}$ und $K_{\rm g5}$ auf den Näherungen $g_3(x)$ und $g_5(x)$ basieren.

$K_{\rm g5}$ stellt im Allgemeinen eine bessere Näherung für $K$ dar als $K_{\rm g3}$.
Für $A = 1.0$ ist $K_{\rm g3}$ kleiner als $K_{\rm g5}$.
Für $A = 0.5$ wird $K_{\rm g3} \approx K_{\rm g5}$ gelten.


Musterlösung

(1)  Die sehr ungenaue Näherung $g_1(x) = x$ ist linear in $x$ und führt deshalb auch nicht zu nichtlinearen Verzerrungen. Damit ergibt sich für den Klirrfaktor $\underline{K = 0}$.

(2)  Das analytische Spektrum (nur positive Frequenzen) des Eingangssignals lautet: $$X_+(f) = A \cdot {\rm \delta}(f- f_0) .$$

Am Ausgang der nichtlinearen Kennlinie $g_3(x)$ liegt dann folgendes Signal an: $$y(t) = A \cdot {\rm cos}(\omega_0 t ) - \frac{A^3}{6} \cdot {\rm cos}^3(\omega_0 t )= A \cdot {\rm cos}(\omega_0 t ) - \frac{3}{4} \cdot \frac{A^3}{6} \cdot {\rm cos}(\omega_0 t )- \frac{1}{4} \cdot \frac{A^3}{6} \cdot {\rm cos}(3\omega_0 t ) = A_1 \cdot {\rm cos}(\omega_0 t ) + A_3 \cdot {\rm cos}(3\omega_0 t ).$$

Für die Koeffizienten $A_1$ und $A_3$ erhält man durch Koeffizientenvergleich: $$A_1 = A - {A^3}\hspace{-0.1cm}/{8}, \hspace{0.5cm}A_3 = - {A^3}\hspace{-0.1cm}/{24}.$$

Mit $A = 0.5$ ergibt sich $A_1 \approx 0.484$ und $A_3 \approx 0.005$. Somit lautet der Klirrfaktor: $$K = K_3 ={|A_3|}/{A_1}= {0.005}/{0.484} \hspace{0.15cm}\underline{ = 1.08\%}.$$

Anzumerken ist, dass bei der Näherung $g_3(x)$ nur der kubische Anteil $K_3$ des Klirrfaktors wirksam ist. Für $A = 1.0$ und $A = 1.5$ ergeben sich folgende Zahlenwerte: $$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx -0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%}\; \; \Rightarrow \; \; K_{g3},$$ $$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx -0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$

(3)  In ähnlicher Weise wie beim Unterpunkt (2) gilt nun $$y(t) = A_1 \cdot {\rm cos}(\omega_0 t ) + A_3 \cdot {\rm cos}(3\omega_0 t )+ A_5 \cdot {\rm cos}(5\omega_0 t )$$

mit folgenden Koeffizienten: $$A_1 = A - {A^3}\hspace{-0.1cm}/{8} + {A^5}\hspace{-0.1cm}/{192},\hspace{0.3cm} A_3 = - {A^3}\hspace{-0.1cm}/{24} + {A^5}\hspace{-0.1cm}/{384},\hspace{0.3cm} A_5 = {A^5}\hspace{-0.1cm}/{1920}.$$

Daraus ergeben sich mit $A=1$ die Zahlenwerte: $$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm} A_3 \approx -0.042 +0.003 = -0.039,\hspace{0.3cm} A_5 \approx 0.0005$$ $$\Rightarrow \hspace{0.3cm}K_3 = {|A_3|}/{A_1}= 0.0443,\hspace{0.3cm}K_5 = {|A_5|}/{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2} \hspace{0.15cm}\underline{\approx 4.45\%} \; \; \Rightarrow \; \; K_{g5}.$$

(4)  Der Ansatz $g_5(x)$ ist im gesamten Bereich eine bessere Näherung für die Sinusfunktion $g(x)$ als die Näherung $g_3(x)$. Deshalb ist der in der Teilaufgabe (3) berechnete Wert $K_{g5}$ eine bessere Näherung für den tatsächlichen Klirrfaktor als $K_{g3}$ – die erste Aussage ist somit richtig.

Dagegen ist die zweite Aussage falsch, wie schon die Berechnung für $A=1$ gezeigt hat, ist $K_{g3} \approx 4.76 \%$ ist größer als $K_{g5} \approx 4.45 \%$. Der Grund hierfür ist, dass $g_3(x)$ unterhalb von $g_5(x)$ liegt und damit auch eine größere Abweichung vom linearen Verlauf vorliegt.

Für $A=0.5$ wird $K_{g5} \approx K_{g5} = 1.08 \%$gelten. Schon die Kennlinie auf der Angabenseite zeigt, dass für $|x| \le 0.5$ die beiden Funktionen $g_3(x)$ und $g_5(x)$ innerhalb der Zeichengenauigkeit nicht zu unterscheiden sind. Damit ergeben sich auch gleiche Klirrfaktoren. Richtig sind also die Lösungsvorschläge 1 und 3