Aufgabe 2.5: „Binomial” oder „Poisson”?

Aus LNTwww
Version vom 29. Mai 2018, 13:02 Uhr von Mwiki-lnt (Diskussion | Beiträge) (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Wechseln zu:Navigation, Suche

Binomial- oder poissonverteilt?

Betrachtet werden zwei diskrete Zufallsgrößen $z_1$ und $z_2$, die alle ganzzahligen Werte zwischen $0$ und $5$ (einschließlich dieser Grenzen) annehmen können. Die Wahrscheinlichkeiten dieser Zufallsgrößen sind in nebenstehender Tabelle angegeben. Eine der beiden Zufallsgrößen ist allerdings nicht auf den angegebenen Wertebereich begrenzt.

Weiterhin ist bekannt, dass

  • eine der Größen binomialverteilt ist, und
  • die andere eine Poissonverteilung beschreibt.


Nicht bekannt ist allerdings, welche der beiden Zufallsgrößen $z_1$ und $z_2$ binomialverteilt und welche poissonverteilt ist.


Hinweise:



Fragebogen

1

Ermitteln Sie aus den Wahrscheinlichkeiten, den Mittelwerten und den Streuungen, ob $z_1$ oder $z_2$ poissonverteilt ist.

$z_1$ ist poissonverteilt und $z_2$ ist binomialverteilt.
$z_1$ ist binomialverteilt und $z_2$ ist poissonverteilt.

2

Welche Rate $\lambda$ weist die Poissonverteilung auf?

$\lambda \ =$

3

Die Werte der Poissonverteilung sind nicht auf den Bereich $0$, ... ,$5$ begrenzt. Wie groß sind die Wahrscheinlichkeiten, dass die poissonverteilte Größe gleich $6$ ist bzw. größer als $6$ ist?

${\rm Pr}(z_{\rm Poisson} = 6) \ =$

${\rm Pr}(z_{\rm Poisson} > 6) \ =$

4

Betrachten Sie nun die Binomialverteilung. Geben Sie deren charakteristische Wahrscheinlichkeit $p$ an.

$p \ =$

5

Wie groß ist damit der Parameter $I$ der Binomialverteilung? Überprüfen Sie Ihr Ergebnis anhand der Wahrscheinlichkeit $\rm Pr(0)$.

$I \ =$


Musterlösung

(1)  Bei der Poissonverteilung sind Mittelwert $m_1$ und Varianz $\sigma^2$ gleich. Die Zufallsgröße $z_1$ erfüllt diese Bedingung  ⇒  Lösungsvorschlag 1.

(2)  Bei der Poissonverteilung ist zudem der Mittelwert gleich der Rate. Deshalb muss $\underline{\lambda = 2}$ gelten.

(3)  Die entsprechende Wahrscheinlichkeit lautet mit $(z_{\rm Poisson} = z_1)$: $${\rm Pr}(z_1 = 6)=\frac{2^6}{6!}\cdot e^{-2}\hspace{0.15cm} \underline{\approx 0.012}$$ $${\rm Pr}(z_1 > 6)=1 -{\rm Pr}(0) -{\rm Pr}(1) - ... - {\rm Pr}(6)\hspace{0.15cm} \underline{\approx 0.004}$$

(4)  Für die Varianz der Binomialverteilung gilt: $$\sigma^{2}= I\cdot p\cdot (1- p)= m_{\rm 1}\cdot ( 1- p).$$

Die charakteristische Wahrscheinlichkeit der Binomialverteilung ergibt sich damit aus der Varianz $\sigma^2 = 1.095$ und dem Mittelwert $m_1 = 2$ entsprechend der Gleichung: $$ 1- p = \frac{\sigma^{2}}{m_1}= \frac{1.2}{2} = 0.6\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 0.4}.$$

(5)  Aus dem Mittelwert $m_1 = 2$ folgt weiterhin $\underline{I= 5}.$ Die Wahrscheinlichkeit für den Wert „0” müsste mit diesen Parametern wie folgt lauten: $${\rm Pr}(z_2 = 0)=\left({5 \atop {0}}\right)\cdot p^{\rm 0}\cdot (1 - p)^{\rm 5-0}=0.6^5=0.078.$$

Das bedeutet: Das Ergebnis ist richtig.