Aufgabe 2.1Z: Welche Tabellen beschreiben Gruppen?

Aus LNTwww
Wechseln zu:Navigation, Suche

Verschiedene Additionstabellen für $q = 3$

In dieser Aufgabe betrachten wir Mengen mit jeweils drei Elementen, allgemein bezeichnet mit $\{z_0, \, z_1, \, z_2\}$. Die Elemente können dabei sein:

  • Zahlen, beispielsweise $z_0 = 0, \ z_1 = 1, \ z_2 = 2$,
  • algebraische Ausdrücke wie $z_0 = A, \ z_1 = B, \ z_2 = C$,
  • irgendwas, beispielsweise $z_0 = „{\rm Apfel}”, \ z_1 = „{\rm Birne}”, \ z_2 = „{\rm Citrone}”$.


Eine Gruppe $(G, \ „+”)$ hinsichtlich der Addition ergibt sich dann, wenn durch eine Tabelle die „$+$”–Verknüpfung zwischen je zwei Elementen so definiert wurde, dass folgende Bedingungen erfüllt sind (die Laufvariablen $i, \ j, \ k$ können dabei jeweils die Werte $0, \ 1, \ 2$ annehmen):

  • Für alle $z_i ∈ G$ und $z_j ∈ G$ gilt $(z_i + z_j) ∈ G$   ⇒   Closure–Kriterium. Die Bedingung muss auch für $i = j$ erfüllt sein.
  • Für alle $z_i, \ z_j, \ z_k$ gilt $(z_i + z_j) + z_k = z_i + (z_j + z_k)$   ⇒   Assoziativgesetz.
  • Es gibt ein hinsichtlich Addition neutrales Element $N_{\rm A} ∈ G$, so dass für alle $z_i ∈ G$ gilt:   $z_i + N_{\rm A} = z_i$.
  • Für alle $z_i ∈ G$ gibt es ein hinsichtlich Addition inverses Element ${\rm Inv}_{\rm A}(z_i) ∈ G$, so dass $z_i + {\rm Inv}_{\rm A}(z_i) = N_{\rm A}$ gilt.


Wird zudem für alle $z_i ∈ G$ und $z_j ∈ G$ noch das Kommutativgesetz   ⇒   $z_i + z_j = z_j + z_i$ erfüllt, so spricht man von einer kommutativen Gruppe oder – nach dem norwegischen Mathematiker Niels Hendrik Abel – von einer abelschen Gruppe.

Die Zahlenmenge $\{0, \, 1, \, 2\}$ ist eine abelsche (kommutative) Gruppe. Entsprechend der grün umrandeten Additionstabelle in obiger Grafik ist hier die Addition modulo $3$ zu verstehen. Somit ist auch die Summe stets $0, \ 1$ oder $2$. Das neutrale Element ist $N_{\rm A} = 0$ und das zu $z_i$ inverse Element ${\rm Inv}_{\rm A}(z_i) = -z_i$:

$${\rm Inv_A}(0) = 0 \hspace{0.05cm},\hspace{0.1cm}{\rm Inv_A}(1) = (-1)\hspace{0.15cm}{\rm mod}\hspace{0.15cm}3 = 2 \hspace{0.05cm},\hspace{0.1cm}{\rm Inv_A}(2) = (-2)\hspace{0.15cm}{\rm mod}\hspace{0.15cm}3 = 1 \hspace{0.05cm}.$$

In dieser Aufgabe sollen Sie überprüfen, ob auch die beiden weiteren in der obigen Grafik dargestellten Additionstabellen jeweils zu einer algebraischen Gruppe gehören.



Hinweise:



Fragebogen

1

Welche Aussagen ergeben sich aus der rot umrandeten Additionstabelle?

Das neutrale Element ist $N_{\rm A} = {\rm C}$.
Die Inversen sind $\rm Inv_A(A) = B, \ Inv_A(B) = A, \ Inv_A(C) = C$.
Es handelt sich hier um eine additive Gruppe $(G, \ +)$.
Auch die Bedingung einer abelschen Gruppe wird erfüllt.

2

Ändert sich etwas gegenüber Teilaufgabe (1), wenn die Elemente $\rm A, \ B, \ C$ nun für „$\rm Apfel$”, „$\rm Birne$” und „$\rm Zitrone$” stehen?

Ja.
Nein.

3

Welche Aussagen ergeben sich aus der blau umrandeten Additionstabelle?

Das neutrale Element ist $N_{\rm A} = a$.
Die additiven Inversen sind $\rm Inv_A(a) = a, \ Inv_A(b) = b, \ Inv_A(c) = c$.
Es handelt sich um eine abelsche Gruppe.


Musterlösung

(1)  Es treffen alle Aussagen zu:

  • Das neutrale Element $N_{\rm A} = {\rm C}$ erkennt man aus der letzten Zeile der Additionstabelle.
  • Aus der Bedingung $z_i + {\rm Inv}_{\rm A}(z_i) = N_{\rm A} = {\rm C}$ erhält man:
  • $\rm Inv_A(A) = B$, da an der zweiten Stelle der ersten Zeile das einzige $\rm C$ steht,
  • $\rm Inv_A(B) = A$, da an der ersten Stelle der zweiten Zeile das einzige $\rm C$ steht,
  • $\rm Inv_A(C) = C$, da an der letzten Stelle der dritten Zeile das einzige $\rm C$ steht.
  • Das Assoziativgesetz überprüfen wir (unzulässigerweise) nur an einem einzigen Beispiel. Durch zweimalige Anwendung der Additionstabelle erhält man beispielsweise $\rm (A + B) + C = C + C=C$. Das gleiche Ergebnis ergibt sich für $\rm A + (B + C) = A + B = C$.


Damit sind alle Bedingungen für eine additive Gruppe erfüllt. Die Gültigkeit des Kommutativgesetzes erkennt man aus der Symmetrie der Additionstabelle zur Diagonalen. Damit ist die Gruppe auch „abelsch”.

Übrigens: Die (rote) Additionstabelle ergibt sich aus der grünen Tabelle durch die Umbenennungen $0 → \rm C, \ 1 → A$ und $2 → \rm B$ und anschließender $\rm ABC$–Sortierung.


(2)  Richtig ist Nein:

  • Alle Aussagen sind allein durch die Additionstabelle bestimmt und nicht durch die Bedeutung der Elemente.
  • Auch der Autor dieser Aufgabe kann allerdings nicht tiefergehend begründen, warum die Modulo–3–Addition von „$\rm Apfel$” und „$\rm Birne$” das neutrale Element „$\rm Citrone$” ergibt.


(3)  Die beiden ersten Aussagen treffen zu im Gegensatz zur letzten:

  • Das Kommutativgesetz wird verletzt (keine Symmetrie bezüglich der Tabellendiagonalen). Beispielsweise gilt:
$$ {\rm a} + {\rm b} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm b} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm b} + {\rm a} = {\rm c} \hspace{0.05cm},$$
$${\rm a} + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm c} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm c} + {\rm a} = {\rm b} \hspace{0.05cm},$$
$${\rm b} + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm b} \hspace{0.5cm} \ne \hspace{0.5cm} {\rm c} + {\rm b} = {\rm c} \hspace{0.05cm} \hspace{0.05cm}.$$
  • Damit ist die hier betrachtete Verknüpfung keine abelsche (kommutative) Gruppe. Mehr noch, wegen der Verletzung des Assoziativgesetzes liegen hier bereits die Grundvoraussetzungen einer Gruppe nicht vor. Beispielsweise gilt:
$${\rm c} + ({\rm c} + {\rm c}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm c} + {\rm a} = {\rm b} \hspace{0.05cm},$$
$$({\rm c} + {\rm c}) + {\rm c} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm a} + {\rm c} = {\rm c} \hspace{0.05cm}.$$