Aufgabe 3.12Z: Ring und Rückkopplung
Aus LNTwww
Version vom 23. Januar 2018, 11:14 Uhr von Guenter (Diskussion | Beiträge)
Um die Pfadgewichtsfunktion $T(X)$ eines Faltungscodes aus dem Zustandsübergangsdiagramm bestimmen zu können, ist es erforderlich, das Diagramm so zu reduzieren, bis es durch eine einzige Verbindung vom Startzustand zum Endzustand dargestellt werden kann.
Im Zuge dieser Diagrammreduktion können auftreten:
- serielle und parallele Übergänge,
- ein Ring entsprechend der obigen Grafik,
- eine Rückkopplung entsprechend der unteren Grafik.
Für diese beiden Graphen sind die Entsprechungen $E(X, \, U)$ und $F(X, \, U)$ in Abhängigkeit der angegebenen Funktionen $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ zu ermitteln.
Hinweise:
- Die Aufgabe gehört zum Kapitel Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken.
- Mit dieser Aufgabe sollen einige der Angaben auf der Seite Regeln zur Manipulation des Zustandsübergangsdiagramms bewiesen werden.
- Angewendet werden diese Regeln in Aufgabe 3.12 und Aufgabe 3.13.
Fragebogen
Musterlösung
(1) Richtig sind die Lösungsvorschläge 1 und 2:
- Allgemein ausgedrückt: Man geht zunächst von $S_1$ nach $S_2$, verbleibt $j$–mal im Zustand $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...}$ und geht abschließend von $S_2$ nach $S_3$ weiter.
(2) Richtig ist der Lösungsvorschlag 2:
- Entsprechend den Ausführungen zur Teilaufgabe (1) erhält man für die Ersetzung des Ringes
- $$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A \cdot C \cdot B + A \cdot C^2 \cdot B + A \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}] \hspace{0.05cm}.$$
- Der Klammerausdruck ergibt $1/(1 \, –C)$.
- $$E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$
(3) Richtig sind die Lösungsvorschläge 1, 3 und 4:
- Man geht zunächst von $S_1$ nach $S_2 \ \Rightarrow \ A(X, \, U)$,
- dann von $S_2$ nach $S_3 \ \Rightarrow \ C(X, \, U)$,
- anschließend $j$–mal zurück nach $S_2$ und wieder nach $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
- abschließend von $S_3$ nach $S_4 \ \Rightarrow \ B(X, \, U)$,
(4) Richtig ist also der Lösungsvorschlag 1:
- Entsprechend der Musterlösung zur Teilaufgabe (3) gilt:
- $$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
- Hierbei beschreibt $E(X, \, U)$ den Weg „$j$–mal” zurück nach $S_2$ und wieder nach $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
- $$E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)} \hspace{0.05cm}.$$