Zweidimensionale Zufallsgrößen

Aus LNTwww
Wechseln zu:Navigation, Suche

# ÜBERBLICK ZUM VIERTEN HAUPTKAPITEL #


Nun werden Zufallsgrößen mit statistischen Bindungen behandelt und anhand typischer Beispiele verdeutlicht. Nach der allgemeinen Beschreibung zweidimensionaler Zufallsgrößen wenden wir uns der Autokorrelationsfunktion (AKF) und der Kreuzkorrelationsfunktion (KKF) zu. Ebenso werden die dazugehörigen Spektralfunktionen angegeben.

Im Einzelnen werden behandelt:

  • die statistische Beschreibung von 2D–Zufallsgrößen  mit Hilfe der (Verbund–)WDF,
  • der Unterschied zwischen statistischer Abhängigkeit  und Korrelation,
  • die Klassifizierungsmerkmale Stationarität  und Ergodizität  stochastischer Prozesse,
  • die Definitionen von Autokorrelationsfunktion  (AKF) und Leistungsdichtespektrum  (LDS),
  • die Definitionen von Kreuzkorrelationsfunktion  und Kreuzleistungsdichtespektrum, und
  • die numerische Ermittlung all dieser Größen im zwei– und mehrdimensionalen Fall.


Weitere Informationen zum Thema „Zweidimensionale Zufallsgrößen” sowie Aufgaben, Simulationen und Programmierübungen finden Sie im

  • Kapitel 5: Zweidimensionale Zufallsgrößen (Programm „zwd”)
  • Kapitel 9: Stochastische Prozesse (Programm „sto”)


des Praktikums „Simulationsmethoden in der Nachrichtentechnik”. Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf


Eigenschaften und Beispiele


Als Überleitung zu den Korrelationsfunktionen betrachten wir nun zwei Zufallsgrößen $x$ und $y$, zwischen denen statistische Abhängigkeiten bestehen.

Jede der beiden Zufallsgrößen kann für sich alleine mit den im zweiten Hauptkapitel Diskrete Zufallsgrößen bzw. im dritten Hauptkapitel Kontinuierliche Zufallsgrößen eingeführten Kenngrößen beschrieben werden.

$\text{Definition:}$  Zur Beschreibung der Wechselbeziehungen zwischen zwei Größen $x$  und  $y$ ist es zweckmäßig, die beiden Komponenten zu einer zweidimensionalen Zufallsgröße $(x, y)$  zusammenzufassen.

  • Die Einzelkomponenten können Signale sein wie der Real– und Imaginärteil eines phasenmodulierten Signals.
  • Aber es gibt auch in anderen Bereichen eine Vielzahl von 2D-Zufallsgrößen, wie das folgende Beispiel zeigen soll.


$\text{Beispiel 1:}$  Das folgende linke Diagramm stammt von dem Zufallsexperiment „Werfen mit zwei Würfeln”. Nach rechts aufgetragen ist die Augenzahl des ersten Würfels $(W_1)$, nach oben die Summe $S$ beider Würfel. Die beiden Komponenten sind hier jeweils diskrete Zufallsgrößen, zwischen denen statistische Bindungen bestehen:

  • Ist $W_1 = 1$, so kann $S$ nur Werte zwischen $2$ und $7$ annehmen und zwar mit jeweils gleicher Warscheinlichkeit.
  • Dagegen sind bei $W_1 = 6$ für $S$ alle Werte zwischen $7$ und $12$ möglich, ebenfalls mit gleicher Warscheinlichkeit.
Beispiele statistisch abhängiger Zufallsgrößen


Rechts sind die Maximaltemperaturen der 31 Tage im Mai 2002 von München (nach oben) und der Zugspitze (nach rechts) gegenübergestellt. Beide Zufallsgrößen sind wertkontinuierlich:

  • Obwohl die Messpunkte etwa 100 km auseinander liegen und es auf der Zugspitze aufgrund der unterschiedlichen Höhenlagen (knapp 3000 gegenüber 520 Meter) im Mittel um etwa 20 Grad kälter ist als in München, erkennt man doch eine gewisse statistische Abhängigkeit zwischen den beiden Größen ${\it Θ}_{\rm M}$ und ${\it Θ}_{\rm Z}$.
  • Ist es in München warm, dann sind auch auf der Zugspitze eher angenehme Temperaturen zu erwarten. Der Zusammenhang ist aber nicht deterministisch: Der kälteste Tag im Mai 2002 war in München ein anderer als der kälteste Tag auf der Zugspitze.

Verbundwahrscheinlichkeitsdichtefunktion


Wir beschränken uns hier meist auf kontinuierliche Zufallsgrößen. Manchmal wird jedoch auch auf die Besonderheiten zweidimensionaler diskreter Zufallsgrößen genauer eingegangen.

Die meisten der vorher für eindimensionale Zufallsgrößen definierten Kenngrößen kann man problemlos auf zweidimensionale Größen erweitern.

$\text{Definition:}$  Die Wahrscheinlichkeitsdichtefunktion der zweidimensionalen Zufallsgröße an der Stelle $(x_\mu, y_\mu)$, die man auch als Verbundwahrscheinlichkeitsdichtefunktion bezeichnet, ist eine Erweiterung der eindimensionalen WDF ($∩$ kennzeichnet die logische UND-Verknüpfung):

$$f_{xy}(x_\mu, \hspace{0.1cm}y_\mu) = \lim_{\left.{\Delta x\rightarrow 0 \atop {\Delta y\rightarrow 0} }\right.}\frac{ {\rm Pr}\big [ (x_\mu - {\rm \Delta} x/{\rm 2} \le x \le x_\mu + {\rm \Delta} x/{\rm 2}) \cap (y_\mu - {\rm \Delta} y/{\rm 2} \le y \le y_\mu +{\rm \Delta}y/{\rm 2}) \big] }{ {\rm \Delta} \ x\cdot{\rm \Delta} y}.$$


Bei diskreten Zufallsgrößen ist die Definition geringfügig zu modifizieren: Bei den jeweils unteren Bereichsgrenzen ist gemäß der Seite Verteilungsfunktion bei diskreten Zufallsgrößen das „≤”–Zeichen durch das „<”–Zeichen zu ersetzen.

Anhand dieser (Verbund)–WDF $f_{xy}(x, y)$ werden auch statistische Abhängigkeiten innerhalb der zweidimensionalen Zufallsgröße $(x, y)$ vollständig erfasst im Gegensatz zu den beiden eindimensionalen Dichtefunktionen ⇒ Randwahrscheinlichkeitsdichtefunktionen:

$$f_{x}(x) = \int _{-\infty}^{+\infty} f_{xy}(x,y) \,\,{\rm d}y ,$$
$$f_{y}(y) = \int_{-\infty}^{+\infty} f_{xy}(x,y) \,\,{\rm d}x .$$

Diese beiden Randdichtefunktionen $f_x(x)$ und $f_y(y)$

  • liefern lediglich statistische Aussagen über die Einzelkomponenten $x$ bzw. $y$,
  • nicht jedoch über die Bindungen zwischen diesen.


Zweidimensionale Verteilungsfunktion


$\text{Definition:}$  Auch die 2D-Verteilungsfunktion ist lediglich eine sinnvolle Erweiterung der eindimensionalen Verteilungsfunktion (VTF):

$$F_{xy}(r_{x},r_{y}) = {\rm Pr}\left [(x \le r_{x}) \cap (y \le r_{y}) \right ] .$$


Es ergeben sich folgende Gemeinsamkeiten und Unterschiede:

  • Der Funktionalzusammenhang zwischen zweidimensionaler WDF und zweidimensionaler VTF ist wie im eindimensionalen Fall durch die Integration gegeben, aber nun in zwei Dimensionen. Bei kontinuierlichen Zufallsgrößen gilt:
$$F_{xy}(r_{x},r_{y})=\int_{-\infty}^{r_{y}} \int_{-\infty}^{r_{x}} f_{xy}(x,y) \,\,{\rm d}x \,\, {\rm d}y .$$
  • Umgekehrt lässt sich die Wahrscheinlichkeitsdichtefunktion aus der Verteilungsfunktion durch partielle Differentiation nach $r_{x}$ und $r_{y}$ angeben:
$$f_{xy}(x,y)=\frac{{\rm d}^{\rm 2} F_{xy}(r_{x},r_{y})}{{\rm d} r_{x} \,\, {\rm d} r_{y}}\Bigg|_{\left.{r_{x}=x \atop {r_{y}=y}}\right.}.$$
  • Bezüglich der Verteilungsfunktion $F_{xy}(r_{x}, r_{y})$ gelten folgende Grenzwerte:
$$F_{xy}(-\infty,-\infty) = 0,$$
$$F_{xy}(r_{\rm x},+\infty)=F_{x}(r_{x} ),$$
$$F_{xy}(+\infty,r_{y})=F_{y}(r_{y} ) ,$$
$$F_{xy}+\infty,+\infty) = 1.$$
  • Im Grenzfall (unendlich große $r_{x}$ und $r_{y}$) ergibt sich demnach für die 2D-VTF der Wert $1$. Daraus erhält man die Normierungsbedingung für die 2D-Wahrscheinlichkeitsdichtefunktion:
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{xy}(x,y) \,\,{\rm d}x \,\,{\rm d}y=1 . $$

$\text{Fazit:}$  Beachten Sie den signifikanten Unterschied zwischen eindimensionalen und zweidimensionalen Zufallsgrößen:

  • Bei eindimensionalen Zufallsgrößen ergibt die Fläche unter der WDF stets den Wert $1$.
  • Bei zweidimensionalen Zufallsgrößen ist das WDF-Volumen immer gleich $1$.

WDF und VTF bei statistisch unabhängigen Komponenten


Bei statistisch unabhängigen Komponenten $x$ und $y$ gilt für die Verbundwahrscheinlichkeit nach den elementaren Gesetzmäßigkeiten der Statistik, falls $x$ und $y$ wertkontinuierlich sind:

$${\rm Pr} [(x_{\rm 1}\le x \le x_{\rm 2}) \cap( y_{\rm 1}\le y\le y_{\rm 2})] ={\rm Pr} (x_{\rm 1}\le x \le x_{\rm 2}) \cdot {\rm Pr}(y_{\rm 1}\le y\le y_{\rm 2}) .$$

Hierfür kann bei unabhängigen Komponenten auch geschrieben werden:

$${\rm Pr} [(x_{\rm 1}\le x \le x_{\rm 2}) \cap(y_{\rm 1}\le y\le y_{\rm 2})] =\int _{x_{\rm 1}}^{x_{\rm 2}}f_{x}(x) \,{\rm d}x\cdot \int_{y_{\rm 1}}^{y_{\rm 2}} f_{y}(y) \, {\rm d}y.$$

$\text{Definition:}$  Daraus folgt, dass bei statistischer Unabhängigkeit folgende Bedingung erfüllt sein muss:

$$f_{xy}(x,y)=f_{x}(x) \cdot f_y(y) .$$


$\text{Beispiel 2:}$  In der Grafik sind die Momentanwerte einer zweidimensionalen Zufallsgröße als Punkte in der $(x, y)$-Ebene eingetragen.

  • Bereiche mit vielen Punkten, die dementsprechend dunkel wirken, kennzeichnen große Werte der WDF $f_{xy}(x, y)$.
  • Dagegen besitzt die Zufallsgröße $(x, y)$ in eher hellen Bereichen nur verhältnismäßig wenig Anteile.


2D-WDF und 2D-VTF, statistisch unabhängige Komponenten

Die Grafik kann wie folgt interpretiert werden:

  • Die Randwahrscheinlichkeitsdichten $f_{x}(x)$ und $f_{y}(y)$ lassen bereits erkennen, dass sowohl $x$ als auch $y$ gaußähnlich und mittelwertfrei sind, und dass die Zufallsgröße $x$ eine größere Streuung als $y$ aufweist. Sie liefern jedoch keine Informationen darüber, ob bei der Zufallsgröße $(x, y)$ statistische Bindungen zwischen den Komponenten bestehen oder nicht.
  • Anhand der 2D-WDF erkennt man aber, dass es hier keine statistischen Bindungen zwischen $x$ und $y$ gibt. Bei statistischer Unabhängigkeit liefert jeder Schnitt durch $f_{xy}(x, y)$ parallel zur $y$-Achse eine Funktion, die formgleich mit der Rand–WDF $f_{y}(y)$ ist. Ebenso sind alle Schnitte parallel zur $x$-Achse formgleich mit $f_{x}(x)$.


Diese Tatsache ist gleichbedeutend mit der Aussage, dass in diesem Beispiel die 2D-WDF $f_{xy}(x, y)$ als Produkt der beiden Randwahrscheinlichkeitsdichten dargestellt werden kann:   $f_{xy}(x,y)=f_{x}(x) \cdot f_y(y) .$

WDF und VTF bei statistisch abhängigen Komponenten


Bestehen statistische Bindungen zwischen den Komponenten $x$ und $y$, so liefern unterschiedliche Schnitte parallel zur $x$– bzw. $y$–Achse jeweils unterschiedliche, nicht formgleiche Funktionen. In diesem Fall lässt sich die Verbund–WDF natürlich auch nicht als Produkt der beiden (eindimensionalen) Randwahrscheinlichkeitsdichten beschreiben.

$\text{Beispiel 3:}$  Die Grafik zeigt die Momentanwerte einer zweidimensionalen Zufallsgröße in der $(x, y)$–Ebene, wobei nun im Gegensatz zum $\text{Beispiel 2}$ zwischen $x$ und $y$ statistische Bindungen bestehen.

  • Die 2D–Zufallsgröße nimmt im blau eingezeichneten Parallelogramm alle Werte mit gleicher Wahrscheinlichkeit an.
  • Außerhalb sind keine Werte möglich.
2D-WDF und 2D-VTF, statistisch abhängige Komponenten

Man erkennt aus dieser Darstellung:

  • Die Integration über die 2D-WDF $f_{xy}(x, y)$ parallel zu der $x$–Achse führt zur dreieckförmigen Randdichte $f_{y}(y)$, die Integration parallel zur $y$–Achse zur trapezförmigen WDF $f_{x}(x)$.
  • Aus der2D-WDFn $f_{xy}(x, y)$ ist bereits zu erahnen, dass für jeden $x$–Wert im statistischen Mittel ein anderer $y$–Wert zu erwarten ist.
  • Das bedeutet aber, dass hier die Komponenten $x$ und $y$ statistisch voneinander abhängen.

Erwartungswerte zweidimensionaler Zufallsgrößen


Ein Sonderfall der statistischen Abhängigkeit ist die Korrelation.

$\text{Definition:}$  Unter Korrelation versteht man eine lineare Abhängigkeit zwischen den Einzelkomponenten $x$ und $y$.

  • Korrelierte Zufallsgrößen sind damit stets auch statistisch abhängig.
  • Aber nicht jede statistische Abhängigkeit bedeutet gleichzeitig eine Korrelation.


Zur quantitativen Erfassung der Korrelation verwendet man verschiedene Erwartungswerte der 2D-Zufallsgröße $(x, y)$, die analog zum eindimensionalen Fall gemäß Kapitel 2 (bei wertdiskreten Zufallsgrößen) bzw. Kapitel 3 (bei wertkontinuierlichen Zufallsgrößen) definiert sind:

$\text{Definition:}$  Für die (nichtzentrierten) Momente gilt die Beziehung:

$$m_{kl}={\rm E}[x^k\cdot y^l]=\int_{-\infty}^{+\infty}\hspace{0.2cm}\int_{-\infty}^{+\infty} x^{k} \cdot y^{l} \cdot f_{xy}(x,y) \, {\rm d}x\, {\rm d}y.$$

Die beiden linearen Mittelwerte sind somit $m_x = m_{10}$ und $m_y = m_{01}.$


$\text{Definition:}$  Die auf $m_x$ bzw. $m_y$ bezogenen Zentralmomente lauten:

$$\mu_{kl} = {\rm E}[(x-m_{x})^k \cdot (y-m_{y})^l] .$$

In dieser allgemein gültigen Definitionsgleichung sind die Varianzen $σ_x^2$ und $σ_y^2$ der zwei Einzelkomponenten durch $\mu_{20}$ bzw. $\mu_{02}$ mit enthalten.


$\text{Definition:}$  Besondere Bedeutung besitzt die sogenannte Kovarianz $(k = l = 1)$, die ein Maß für die lineare statistische Abhängigkeit zwischen den Zufallsgrößen $x$ und $y$ ist:

$$\mu_{11} = {\rm E}[(x-m_{x})\cdot(y-m_{y})] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x-m_{x}) (y-m_{y})\cdot f_{xy}(x,y) \,{\rm d}x \, {\rm d}y .$$


Im Folgenden bezeichnen wir die Kovarianz $\mu_{11}$ teilweise auch mit $\mu_{xy}$, falls sich die Kovarianz auf die Zufallsgrößen $x$ und $y$ bezieht. Die Kovarianz hängt wie folgt mit dem nichtzentrierten Moment $m_{11} = m_{xy} = {\rm E}[x · y]$ zusammen:

$$\mu_{xy} = m_{xy} -m_{x }\cdot m_{y}.$$

Anmerkung:

  • Diese Gleichung ist für die numerische Auswertung von enormen Vorteil, da $m_{xy}$, $m_x$ und $m_y$ aus den Folgen $〈x_v〉$ und $〈y_v〉$ direkt - also in einem Durchlauf - gefunden werden können.
  • Würde man dagegen die Kovarianz $\mu_{xy}$ entsprechend der oberen Definitionsgleichung berechnen, so müsste man in einem ersten Durchlauf die Mittelwerte $m_x$ und $m_y$ ermitteln und dann in einem zweiten Durchlauf den Erwartungswert ${\rm E}[(x – m_x) · (y – m_y)]$.


$\text{Beispiel 4:}$  In den beiden ersten Zeilen der folgenden Tabelle sind die jeweils ersten Elemente zweier Zufallsfolgen $〈x_ν〉$ und $〈y_ν〉$ eingetragen. In der letzten Zeile sind die jeweiligen Produkte $x_ν · y_ν$ angegeben.

Beispielhafte 2D-Erwartungswerte

Die Tabelle zeigt folgenden Sachverhalt:

  • Durch Mittelung über die jeweils zehn Folgenelemente erhält man $m_x =0.5$, $m_y = 1$ und $m_{xy} = 0.69$. Daraus ergibt sich die Kovarianz zu $\mu_{xy} = 0.69 - 0.5 · 1 = 0.19.$
  • Ohne Kenntnis der Gleichung $\mu_{xy} = m_{xy} - m_x · m_y$ hätte man zunächst im ersten Durchlauf die Mittelwerte $m_x$ und $m_y$ ermitteln müssen, um im zweiten Durchlauf die Kovarianz $\mu_{xy}$ als Erwartungswert des Produkts der mittelwertfreien Größen bestimmen zu können.

Korrelationskoeffizient


Bei statististischer Unabhängigkeit der beiden Komponenten $x$ und $y$ ist die Kovarianz $\mu_{xy} \equiv 0$. Dieser Fall wurde im $\text{Beispiel 2}$ auf der Seite WDF und VTF bei statistisch unabhängigen Komponenten betrachtet.

  • Das Ergebnis „$\mu_{xy} = 0$” ist aber auch bei statistisch abhängigen Komponenten $x$ und $y$ möglich, nämlich dann, wenn diese unkorreliert, also linear unabhängig sind.
  • Die statistische Abhängigkeit ist dann nicht von erster, sondern von höherer Ordnung, zum Beispiel entsprechend der Gleichung $y=x^2.$


Man spricht von „vollständiger Korrelation”, wenn die (deterministische) Abhängigkeit zwischen $x$ und $y$ durch die Gleichung $y = K · x$ ausgedrückt wird. Dann ergibt sich für die Kovarianz:

  • $\mu_{xy} = σ_x · σ_y$ bei positivem Wert von $K$,
  • $\mu_{xy} = - σ_x · σ_y$ bei negativem $K$–Wert.


Deshalb verwendet häufig als Beschreibungsgröße anstelle der Kovarianz den so genannten Korrelationskoeffizienten.

$\text{Definition:}$  Der Korrelationskoeffizient ist der Quoient aus Kovarianz $\mu_{xy}$ und dem Produkt der Effektivwerte $σ_x$ und $σ_y$ der beiden Komponenten:

$$\rho_{xy}=\frac{\mu_{xy} }{\sigma_x \cdot \sigma_y}.$$

Der Korrelationskoeffizient weist folgende Eigenschaften auf:

  • Aufgrund der Normierung gilt stets ≤ $-1 \le ρ_{xy} ≤ +1$.
  • Sind die beiden Zufallsgrößen $x$ und $y$ unkorreliert, so ist $ρ_{xy} = 0$.
  • Bei strenger linearer Abhängigkeit zwischen $x$ und $y$ ist $ρ_{xy}= ±1$   ⇒   vollständige Korrelation.
  • Ein positiver Korrelationskoeffizient bedeutet, dass bei größerem $x$–Wert im statistischen Mittel auch $y$ größer ist als bei kleinerem $x$.
  • Dagegen drückt ein negativer Korrelationskoeffizient aus, dass $y$ mit steigendem $x$ im Mittel kleiner wird.


Gaußsche 2D-WDF mit Korrelation

$\text{Beispiel 5:}$  Es gelten folgende Voraussetzungen:

  • Die betrachteten Komponenten $x$ und $y$ besitzen jeweils eine gaußförmige WDF.
  • Die beiden Streuungen sind unterschiedlich $(σ_y < σ_x)$.
  • Der Korrelationskoeffizient beträgt $ρ_{xy} = 0.8$.


Im Unterschied zum Beispiel 2 mit statistisch unabhängigen Komponenten   ⇒   $ρ_{xy} = 0$ trotz $σ_y < σ_x$ erkennt man, dass hier bei größerem $x$–Wert im statistischen Mittel auch $y$ größer ist als bei kleinerem $x$.


Korrelationsgerade


Man kann nun in die $(x, y)$–Ebene eine Gerade durch den „Mittelpunkt” $(m_x, m_y)$ einzeichnen. Diese Gerade $y = K(x)$ bezeichnet man als Korrelationsgerade, manchmal auch als Regressionsgerade.

Gaußsche 2D-WDF mit Korrelationsgerade

Die Korrelationsgerade besitzt folgende Eigenschaften:

  • Die mittlere quadratische Abweichung von dieser Geraden – in $y$-Richtung betrachtet und über alle $N$ Punkte gemittelt – ist minimal:
$$\overline{\varepsilon_y^{\rm 2}}=\frac{\rm 1}{N} \cdot \sum_{\nu=\rm 1}^{N}\; \;[y_\nu-K(x_{\nu})]^{\rm 2}={\rm Minimum}.$$
  • Die Korrelationsgerade kann man als eine Art „statistische Symmetrieachse“ interpretieren. Die Geradengleichung lautet:
$$y=K(x)=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$
  • Der Winkel, den die Korrelationsgerade zur $x$-Achse einnimmt, beträgt:
$$\theta_{y\rightarrow x}={\rm arctan}(\frac{\sigma_{y}}{\sigma_{x}}\cdot \rho_{xy}).$$

Durch diese Nomenklatur soll deutlich gemacht werden, dass es sich hier um die Regression von $y$ auf $x$ handelt. Die Regression in Gegenrichtung – also von $x$ auf $y$ – bedeutet dagegen die Minimierung der mittleren quadratischen Abweichung in $x$–Richtung.

Das interaktive Applet Korrelationskoeffizient und Regressionsgerade verdeutlicht, dass sich im Allgemeinen (falls $σ_y \ne σ_x$) für die Regression von $x$ auf $y$ ein anderer Winkel und damit auch eine andere Regressionsgerade ergeben wird:

$$\theta_{x\rightarrow y}={\rm arctan}(\frac{\sigma_{x}}{\sigma_{y}}\cdot \rho_{xy}).$$


Aufgaben zum Kapitel


Aufgabe 4.1: Dreieckiges (x, y)-Gebiet

Aufgabe 4.1Z: Verabredung zum Frühstück

Aufgabe 4.1: Wieder Dreieckgebiet

Aufgabe 4.2Z: Korrelation zwischen $x$ und $e^x$

Aufgabe 4.3: Algebraische und Modulo-Summe

Aufgabe 4.3Z: Diracförmige 2D-WDF