Aufgabe 2.7Z: Huffman-Codierung für Zweiertupel einer Ternärquelle
Aus LNTwww
Version vom 25. Januar 2020, 17:16 Uhr von Guenter (Diskussion | Beiträge)
Wir betrachten den gleichen Sachverhalt wie in der Aufgabe A2.7:
- Der Huffman–Algorithmus führt zu einem besseren Ergebnis, das heißt zu einer kleineren mittleren Codewortlänge $L_{\rm M}$, wenn man ihn nicht auf einzelne Symbole anwendet, sondern vorher $k$–Tupel bildet.
- Dadurch erhöht man den Symbolumfang von $M$ auf $M\hspace{0.03cm}' = M^k$.
Für die hier betrachtete Nachrichtenquelle gilt:
- Symbolumfang: $M = 3$,
- Symbolvorrat: $\{$ $\rm X$, $\rm Y$, $\rm Z$ $\}$,
- Wahrscheinlichkeiten: $p_{\rm X} = 0.7$, $p_{\rm Y} = 0.2$, $p_{\rm Z} = 0.1$,
- Entropie: $H = 1.157 \ \rm bit/Ternärsymbol$.
Die Grafik zeigt den Huffman–Baum, wenn man den Huffman–Algorithmus auf Einzelsymbole anwendet, also den Fall $k= 1$.
In der Teilaufgabe (2) sollen Sie den entsprechenden Huffman–Code angeben, wenn vorher Zweiertupel gebildet werden $(k=2)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Entropiecodierung nach Huffman.
- Insbesondere wird auf die Seite Anwendung der Huffman-Codierung auf $k$-Tupel Bezug genommen.
- Eine vergleichbare Aufgabenstellung mit binären Eingangssymbolen wird in der Aufgabe 2.7 behandelt.
- Bezeichnen Sie die möglichen Zweiertupel mit $\rm XX = A$, $\rm XY = B$, $\rm XZ = C$, $\rm YX = D$, $\rm YY = E$, $\rm YZ = F$, $\rm ZX = G$, $\rm ZY = H$, $\rm ZZ = I$.
Fragebogen
Musterlösung
(1) Die mittlere Codewortlänge ergibt sich mit $p_{\rm X} = 0.7$, $L_{\rm X} = 1$, $p_{\rm Y} = 0.2$, $L_{\rm Y} = 2$, $p_{\rm Z} = 0.1$, $L_{\rm Z} = 2$ zu
- $$L_{\rm M} = p_{\rm X} \cdot 1 + (p_{\rm Y} + p_{\rm Z}) \cdot 2 \hspace{0.15cm}\underline{= 1.3\,\,{\rm bit/Quellensymbol}}\hspace{0.05cm}. $$
Dieser Wert liegt noch deutlich über der Quellenentropie $H = 1.157$ bit/Quellensymbol.
(2) Es gibt $M' = M^k = 3^2$ = 9 Zweiertupel mit folgenden Wahrscheinlichkeiten:
- $$p_{\rm A} = \rm Pr(XX) = 0.7 \cdot 0.7\hspace{0.15cm}\underline{= 0.49},$$
- $$p_{\rm B} = \rm Pr(XY) = 0.7 \cdot 0.2\hspace{0.15cm}\underline{= 0.14},$$
- $$p_{\rm C} = \rm Pr(XZ) = 0.7 \cdot 0.1\hspace{0.15cm}\underline{= 0.07},$$
- $$p_{\rm D} = \rm Pr(YX) = 0.2 \cdot 0.7 = 0.14,$$
- $$p_{\rm E} = \rm Pr(YY) = 0.2 \cdot 0.2 = 0.04,$$
- $$p_{\rm F} = \rm Pr(YZ) = 0.2 \cdot 0.1 = 0.02,$$
- $$p_{\rm G} = \rm Pr(ZX) = 0.1 \cdot 0.7 = 0.07,$$
- $$p_{\rm H} = \rm Pr(ZY) = 0.1 \cdot 0.2 = 0.02,$$
- $$p_{\rm I} = \rm Pr(ZZ) = 0.1 \cdot 0.1 = 0.01.$$
(3) Die Grafik zeigt den Huffman–Baum für die Anwendung mit $k = 2$.
Damit erhält man
- für die einzelnen Zweiertupels folgende Binärcodierungen:
- $\rm XX = A$ → 0, $\rm XY = B$ → 111, $\rm XZ = C$ → 1011,
- $\rm YX = D$ → 110, $\rm YY = E$ → 1000, $\rm YZ = F$ → 10010,
- $\rm ZX = G$ → 1010, $\rm ZY = H$ → 100111, $\rm ZZ =I$ → 100110.
- für die mittlere Codewortlänge:
- $$L_{\rm M}\hspace{0.01cm}' =0.49 \cdot 1 + (0.14 + 0.14) \cdot 3 + (0.07 + 0.04 + 0.07) \cdot 4 + 0.02 \cdot 5 + (0.02 + 0.01) \cdot 6 = 2.33\,\,{\rm bit/Zweiertupel}$$
- $$\Rightarrow\hspace{0.3cm}L_{\rm M} = {L_{\rm M}\hspace{0.01cm}'}/{2}\hspace{0.15cm}\underline{ = 1.165\,\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$
(4) Richtig ist die Aussage 1, auch wenn $L_{\rm M}$ mit wachsendem $k$ nur sehr langsam abfällt.
- Die letzte Aussage ist falsch, da $L_{\rm M}$ auch für $k → ∞$ nicht kleiner sein kann als $H = 1.157$ bit/Quellensymbol.
- Aber auch die zweite Aussage ist nicht unbedingt richtig: Da mit $k = 2$ weiterhin $L_{\rm M} > H$ gilt, kann $k = 3$ zu einer weiteren Verbesserung führen.