Aufgabe 2.2Z: Nochmals Verzerrungsleistung

Aus LNTwww
Wechseln zu:Navigation, Suche

Zur Berechnung der Verzerrungsleistung

Am Eingang der betrachteten Funktionseinheit, die nicht näher spezifiziert wird, liegt das in der Grafik blau dargestellte periodische Signal  $x(t)$  an. Dieses ist durch das Spektrum des dazugehörigen analytischen Signals gegeben:

$$X_+(f) = {1 \,\rm V} \cdot {\rm \delta}(f- {2 \,\rm kHz}) + {0.2 \,\rm V} \cdot {\rm e}^{\rm j \hspace{0.05cm}\cdot \hspace{0.05cm}90^{\circ} } \cdot \delta(f- {3 \,\rm kHz}).$$

Diese Spektralfunktion ergibt sich aus dem üblichen Spektrum  $X(f)$, indem

  • alle Anteile bei negativen Frequenzen abgeschnitten, und
  • die Anteile bei den positiven Frequenzen verdoppelt werden.


Weitere Angaben zum analytischen Signal und dessen Spektrum finden Sie im Kapitel  Analytisches Signal und zugehörige Spektralfunktion  des Buches „Signaldarstellung”.
Das Spektrum des analytischen Signals am Ausgang der Funktionseinheit lautet:

$$Y_+(f) = {1.1 \,\rm V} \cdot {\rm \delta}(f- {2 \,\rm kHz}) + {0.25 \,\rm V} \cdot {\rm e}^{\rm j \hspace{0.05cm}\cdot \hspace{0.05cm} 60^{\circ} } \cdot \delta(f- {3 \,\rm kHz})+ {0.05 \,\rm V} \cdot {\rm e}^{-\rm j \hspace{0.05cm}\cdot \hspace{0.05cm} 90^{\circ} } \cdot \delta(f- {5 \,\rm kHz}).$$

Die untere Skizze zeigt das Differenzsignal  $\varepsilon(t) = y(t) - x(t)$. Ein Maß für die im System entstandenen Verzerrungen ist die auf den Widerstand  $R = 1 \ \rm \Omega$  bezogene „Verzerrungsleistung”.

$$P_{\rm V} = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t.$$

Anzumerken ist, dass die Verzerrungsleistung auch im Spektralbereich berechnet werden kann – und hier zudem einfacher.

In analoger Weise ist die Leistung  $P_x$  des Eingangssignals  $x(t)$  definiert. Als quantitatives Maß für die Stärke der Verzerrungen wird das Signal–zu–Verzerrungs–Leistungsverhältnis angegeben, das meistens logarithmisch in dB dargestellt wird:

$$10 \cdot {\rm lg} \hspace{0.1cm}\rho_{\rm V} = 10 \cdot {\rm lg} \hspace{0.1cm}{ P_{x}}/{P_{\rm V}} \hspace{0.05cm}.$$



Hinweise:

  • Alle hier abgefragten Leistungen beziehen sich auf den Widerstand  $R = 1 \ \rm \Omega$  und haben somit die Einheit  ${\rm V}^2$.
  • Die Leistung eines (reellen) Signals  $x(t)$  kann auch aus der Spektralfunktion  $X(f)$  berechnet werden:
$$P_{x} =\frac{1}{T_{\rm 0}} \cdot\int_{-\infty}^{ \infty} x^2(t)\hspace{0.1cm}{\rm d}t = \frac{1}{T_{\rm 0}} \cdot \int_{-\infty}^{ \infty} |X(f)|^2\hspace{0.1cm}{\rm d}f.$$


Fragebogen

1

Welche Aussagen sind bezüglich des Signals  $x(t)$  zutreffend?

Es ist  $x(t) = 1 \ { \rm V} \cdot {\rm cos}(2\pi \cdot 2 \ {\rm kHz} \cdot t ) + 0.2 \ { \rm V} \cdot {\rm cos}(2\pi \cdot 3 \ {\rm kHz} \cdot t )$.
Die Periodendauer ist  $T_0 = 1 \ \rm ms$.
Die Periodendauer ist  $T_0 = 2 \ \rm ms$.

2

Berechnen Sie die Leistung  $P_x$  des Eingangssignals  $x(t)$.

$P_x \ = \ $

$\ \rm V^2$

3

Berechnen Sie die Verzerrungsleistung  $P_{\rm V}$.

$P_{\rm V} \ = \ $

$\ \rm V^2$

4

Berechnen Sie das Signal–zu–Verzerrungs–Leistungsverhältnis  $\rho_{\rm V}$  und geben Sie dieses als dB–Wert ein.

$10 \cdot {\rm lg} \ \rho_{\rm V} \ = \ $

$\ \rm dB$


Musterlösung

(1)  Richtig ist die Antwort 2:

  • Der größte gemeinsame Teiler von  $f_1 = 2 \ \rm kHz$  und  $f_2 = 3 \ \rm kHz$  ist  $f_0 = 1 \ \rm kHz$.
  • Damit beträgt die Periodendauer  $T_0 = 1/f_0 = 1 \ \rm ms$.
  • Das Signal lautet aufgrund des Phasenterms  ${\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}90^\circ}$:
$$x(t) = {1 \, \rm V} \cdot {\rm cos}(2\pi f_1 t ) - {0.2 \, \rm V} \cdot {\rm sin}(2\pi f_2 t ).$$


(2)  Um die Leistung im Zeitbereich zu berechnen, muss das Signal  $x(t) = x_1(t) + x_2(t)$  quadriert und über ein geeignetes Zeitintervall gemittelt werden. Für ein periodisches Signal genügt die Mittelung über  $T_0$:

$$P_{\rm V} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} {\left[x_1(t)+ x_2(t) \right]^2 }\hspace{0.1cm}{\rm d}t = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} {x_1^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.1cm}+\hspace{0.1cm} \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} {x_2^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.1cm}+\hspace{0.1cm} \frac{2}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} { x_1(t) \cdot x_2(t) }\hspace{0.1cm}{\rm d}t.$$

Das erste Integral liefert:

$$P_{\rm 1} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} { ({1 \, \rm V})^2 \cdot {\rm cos}^2(2\pi f_1 t )}\hspace{0.1cm}{\rm d}t = \frac{1 \, \rm V^2}{2 T_{\rm 0}}\hspace{0.05cm} \cdot \int\limits_{0}^{ T_{\rm 0}} { \left[ 1+ {\rm cos}(4\pi f_1 t )\right]}\hspace{0.1cm}{\rm d}t = {0.5 \, \rm V^2}.$$

In gleicher Weise erhält man für die Leistung des zweiten Terms:   $P_2 = (0.2 \ {\rm V}^2/2 = 0.02 \ {\rm V}^2.$ Dagegen liefert das letzte Integral keinen Beitrag, da  $x_1(t)$  und  $x_2(t)$  zueinander orthogonal sind. Somit erhält man für die gesamte Signalleistung:

$$P_{x} =P_{\rm 1} + P_{\rm 2} = {0.5 \, \rm V^2} + {0.02 \, \rm V^2}\hspace{0.15cm}\underline{ = {0.52 \, \rm V^2}}.$$

Dieses Ergebnis kann man auch aus der Spektralfunktion herleiten, wenn man die Amplituden aller diskreten Spektralanteile quadriert, halbiert und aufsummiert. Die Phasenlagen der einzelnen Spektrallinien müssen dabei nicht berücksichtigt werden.


(3)  Unabhängig davon, ob ein lineares oder ein nichtlineares System vorliegt, kann für das analytische Spektrum des Differenzsignals $\varepsilon(t) = y(t) - x(t)$  mit  $f_2 = 2 \ \rm kHz$,  $f_3 = 3 \ \rm kHz$  und  $f_5 = 5 \ \rm kHz$  geschrieben werden:

$$E_+(f) = Y_+(f) - X_+(f) = {0.1 \,\rm V} \cdot {\rm \delta}(f- f_2) + \left[{0.25 \,\rm V} \cdot {\rm e}^{\rm j \cdot 60^{\circ} } - {0.2 \,\rm V} \cdot {\rm e}^{\rm j \cdot 90^{\circ} } \right] \cdot \delta(f- f_3) + {0.05 \,\rm V} \cdot {\rm e}^{-\rm j \cdot 90^{\circ} } \cdot \delta(f- f_5).$$

Die komplexe Amplitude des zweiten Terms ist:

$$C_2 = {0.25 \,\rm V} \cdot \cos( 60^{\circ}) + {\rm j} \cdot{0.25 \,\rm V} \cdot \sin( 60^{\circ}) - {\rm j} \cdot{0.05 \,\rm V} $$
$$\Rightarrow \hspace{0.3cm} C_2 = {0.25 \,\rm V} \cdot 0.5 + {\rm j} \cdot{0.25 \,\rm V} \cdot 0.866 - {\rm j} \cdot{0.2 \,\rm V} = {0.125 \,\rm V} + {\rm j} \cdot{0.016 \,\rm V}.$$

Damit ergibt sich für den Betrag:

$$|C_2| = \sqrt{({0.125 \,\rm V})^2+({0.016 \,\rm V})^2 }= {0.126 \,\rm V}.$$

Die Phasenlagen müssen bei der Leistungsberechnung nicht berücksichtigt werden. Somit gilt:

$$P_{\rm V} = \frac{1}{2} \cdot \left[ ({0.1 \,\rm V})^2 + ({0.126 \,\rm V})^2 + ({0.05 \,\rm V})^2\right] \hspace{0.15cm}\underline{= {0.0142 \, \rm V^2}}.$$


(4)  Entsprechend der Definition auf der Angabenseite gilt:

$$\rho_{\rm V} = \frac{ P_{x}}{P_{\rm V}}= \frac{ {0.52 \, \rm V^2}}{0.0142 \, \rm V^2}\hspace{0.05cm}\rm = 36.65\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V} \hspace{0.15cm}\underline{= {15.64 \, \rm dB}}.$$