Aufgabe 2.2Z: Realer Zweiwegekanal
Aus LNTwww
Version vom 11. April 2019, 16:00 Uhr von Guenter (Diskussion | Beiträge)
Betrachtet wird das skizzierte Szenario, bei dem das Sendesignal $s(t)$ die Antenne des Empfängers über zwei Wege erreicht:
- $$r(t) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} r_1(t) + r_2(t) =k_1 \cdot s( t - \tau_1) + k_2 \cdot s( t - \tau_2) \hspace{0.05cm}.$$
Dabei ist zu beachten:
- Die Laufzeiten $\tau_1$ und $\tau_2$ auf Haupt– und Nebenpfad können aus den Pfadlängen $d_1$ und $d_2$ unter Verwendung der Lichtgeschwindigkeit $c = 3 \cdot 10^8 \ \rm m/s$ berechnet werden.
- Die Amplitudenfaktoren $k_1$ und $k_2$ sollen vereinfachend gemäß dem Pfadverlustmodell mit dem Pfadverlustexponenten $\gamma = 2$ angenommen werden (Freiraumdämpfung).
- Die Höhe der Sendeantenne ist $h_{\rm S} = 500 \ \rm m$, die der Empfangsantenne $h_{\rm E} = 30 \ \rm m$. Die Antennen stehen im Abstand von $d = 10 \ \rm km$.
- Die Reflektion auf dem Nebenpfad führt zu einer Phasenänderung um $\pi$, so dass man die Teilsignale subtrahieren muss. Dies wird durch einen negativen $k_2$–Wert berücksichtigt.
Hinweis:
- Die Aufgabe gehört zum Kapitel Mehrwegeempfang beim Mobilfunk.
Fragebogen
Musterlösung
(1) Mit den Bezeichnungen in der Veranschaulichungsskizze ergibt sich nach „Pythagoras”:
- $$d_1 = \sqrt{d^2 + (h_{\rm S}- h_{\rm E})^2} = \sqrt{10^2 + (0.5- 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10011.039\,{\rm m}} \hspace{0.05cm}.$$
- Eigentlich ist die Angabe einer solchen Länge mit der Genauigkeit eines Millimeters nicht sehr sinnvoll und widerspricht der Mentalität eines Ingenieurs.
- Wir haben das hier trotzdem gemacht, um die Genauigkeit der in der Teilaufgabe (4) gesuchten Näherung überprüfen zu können.
(2) Klappt man den reflektierten Strahl rechts vpn $x_{\rm R}$ nach unten (Spiegelung am Erdboden), so erhält man wiederum ein rechtwinkliges Dreieck. Daraus folgt:
- $$d_2 = \sqrt{d^2 + (h_{\rm S}+ h_{\rm E})^2} = \sqrt{10^2 + (0.5+ 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10014.035\,{\rm m}} \hspace{0.05cm}.$$
(3) Mit den Ergebnissen aus (1) und (2) erhält man für die Längen– und die Laufzeitdifferenz:
- $$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2.996\,{\rm m}} \hspace{0.05cm},\hspace{1cm} \Delta \tau = \frac{\Delta d}{c} = \frac{2.996\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s}} \hspace{0.1cm} \underline {=9.987\,{\rm ns}} \hspace{0.05cm}.$$
(4) Mit $h_{\rm S} + h_{\rm E} \ll d$ lassen sich die obigen Gleichung wie folgt ausdrücken:
- $$d_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}- h_{\rm E})^2}{d^2}} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}- h_{\rm E})^2}{2d^2} \right ] \hspace{0.05cm},\hspace{1cm} d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2}} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{2d^2} \right ] $$
- $$\Rightarrow \hspace{0.3cm} \Delta d = d_2 - d_1 \approx \frac {1}{2d} \cdot \left [ (h_{\rm S}+ h_{\rm E})^2 - (h_{\rm S}- h_{\rm E})^2 \right ] = \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{d}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \Delta \tau = \frac{\Delta d}{c} \approx \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{c \cdot d} \hspace{0.05cm}.$$
- Richtig ist also der Lösungsvorschlag 3. Mit den vorgegebenen Zahlenwerten erhält man hierfür:
- $$\Delta \tau \approx \frac {2 \cdot 500\,{\rm m}\cdot 30\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s} \cdot 10000\,{\rm m}} = 10^{-8}\,{\rm s} = 10\,{\rm ns} \hspace{0.05cm}.$$
- Die relative Verfälschung gegenüber dem tatsächlichen Wert entsprechend Teilaufgabe (3) beträgt nur $0.13\%$.
- Beim Lösungsvorschlag 1 stimmt schon die Einheit nicht.
- Bei Lösungsvorschlag 2 käme es zu keiner Laufzeitverschiebung, wenn beide Antennen die gleiche Höhe hätten. Dies trifft sicher nicht zu.
(5) Der Pfadverlustexponent $\gamma = 2$ sagt aus, dass die Empfangsleistung $P_{\rm E}$ quadratisch mit der Distanz abnimmt.
- Die Signalamplitude nimmt also mit $1/d$ ab, und mit einer Konstanten $K$ gilt:
- $$k_1 = \frac {K}{d_1} \hspace{0.05cm},\hspace{0.2cm}|k_2| = \frac {K}{d_2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {|k_2|}{k_1} = \frac {d_1}{d_2}= \frac {10011.039\,{\rm m}}{10014.035\,{\rm m}} \approx 0.99 \hspace{0.05cm}.$$
- Die beiden Pfadgewichte unterscheiden sich somit im Betrag nur um etwa $1\%$.
- Allerdings haben die Koeffizienten $k_1$ und $k_2$ verschiedene Vorzeichen ⇒ Richtig sind die Antworten 1 und 3.