Das Gram-Schmidt-Verfahren
Inhaltsverzeichnis
Programmbeschreibung
Das Applet verdeutlicht das Gram–Schmidt–Verfahren. Dieses ermöglicht, eine Menge $\{s_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , s_M(t)\}$ energiebegrenzter Signale mit Hilfe von $N \le M$ orthonormalen Basisfunktionen $\varphi_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \varphi_N(t)$ in folgender Form darzustellen:
- $$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) , \hspace{0.3cm}i = 1,\hspace{0.05cm} \text{...}\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} \text{...} \hspace{0.1cm}, N \hspace{0.05cm}.$$
Der vektorielle Repräsentant der Musterfunktion $s_1(t)$ lautet dann: $$\mathbf{s}_i = \big( s_{i1}\hspace{0.05cm}, \hspace{0.3cm}s_{i2}\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm},\hspace{0.05cm} s_{iN} \big ).$$
Das Applet zeigt alle Grafiken, die zum Verständnis des Gram–Schmidt–Verfahrens erforderlich sind, und als jeweiliges Ergebnis
- die 2D–Darstellung der $M$ vektoriellen Repräsentanten, falls $N=2$,
- die 3D–Darstellung der $M$ vektoriellen Repräsentanten, falls $N=3$.
Theoretischer Hintergrund
Signaldarstellung mit orthonormalen Basisfunktionen
Wir gehen von einer Menge $\{s_i(t)\}$ möglicher Sendesignale aus, die den möglichen Nachrichten $m_i$ eineindeutig zugeordnet sind. Mit $i = 1$, ... , $M$ gelte:
- $$m \in \{m_i \}, \hspace{0.2cm} s(t) \in \{s_i(t) \}\hspace{-0.1cm}: \hspace{0.3cm} m = m_i \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} s(t) = s_i(t) \hspace{0.05cm}.$$
Für das Folgende setzen wir weiter voraus, dass die $M$ Signale $s_i(t)$ energiebegrenzt sind, was meist gleichzeitig bedeutet, dass sie nur von endlicher Dauer sind.
$\text{Satz:}$ Eine jede Menge $\{s_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , s_M(t)\}$ energiebegrenzter Signale lässt sich in $N \le M$ orthonormale Basisfunktionen $\varphi_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \varphi_N(t)$ entwickeln. Es gilt:
- $$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) , \hspace{0.3cm}i = 1,\hspace{0.05cm} \text{...}\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} \text{...} \hspace{0.1cm}, N \hspace{0.05cm}.$$
Jeweils zwei Basisfunktionen $\varphi_j(t)$ und $\varphi_k(t)$ müssen orthonormal zueinander sein, das heißt, dass gelten muss $(\delta_{jk}$ nennt man das Kronecker–Symbol$)$:
- $$<\hspace{-0.1cm}\varphi_j(t), \hspace{0.05cm}\varphi_k(t) \hspace{-0.1cm}> = \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\,d \it t = {\rm \delta}_{jk} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.4cm}j = k\hspace{0.1cm} \\ {\rm falls}\hspace{0.4cm} j \ne k \hspace{0.1cm}\\ \end{array} \hspace{0.05cm}.$$
Der Parameter $N$ gibt dabei an, wieviele Basisfunktionen $\varphi_j(t)$ benötigt werden, um die $M$ möglichen Sendesignale darzustellen. Mit anderen Worten: $N$ ist die Dimension des Vektorraums, der von den $M$ Signalen aufgespannt wird. Dabei gilt:
- Ist $N = M$, so sind alle Sendesignale zueinander orthogonal. Sie sind nicht notwendigerweise orthonormal, das heißt, die Energien $E_i = \ <\hspace{-0.01cm}s_i(t), \hspace{0.05cm}s_i(t) \hspace{-0.01cm}>$ können durchaus ungleich Eins sein.
- Der Fall $N < M$ ergibt sich, wenn mindestens ein Signal $s_i(t)$ als Linearkombination von Basisfunktionen $\varphi_j(t)$ dargestellt werden kann, die sich bereits aus anderen Signalen $s_j(t) \ne s_i(t)$ ergeben haben.
$\text{Beispiel 1:}$ Wir betrachten $M = 3$ energiebegrenzte Signale gemäß der Grafik.
Man erkennt sofort:
- Die Signale $s_1(t)$ und $s_2(t)$ sind zueinander orthogonal.
- Die Energien sind $E_1 = A^2 \cdot T = E$ und $E_2 = (A/2)^2 \cdot T = E/4$.
- Die Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$ sind jeweils formgleich mit $s_1(t)$ bzw. $s_2(t)$.
- Beide Signale besitzen jeweils die Energie „Eins”:
- $$\varphi_1(t)=\frac{s_1(t)}{\sqrt{E_1} } = \frac{s_1(t)}{\sqrt{A^2 \cdot T} } = \frac{1}{\sqrt{ T} } \cdot \frac{s_1(t)}{A}$$
- $$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_1(t) = s_{11} \cdot \varphi_1(t)\hspace{0.05cm},\hspace{0.1cm}s_{11} = \sqrt{E}\hspace{0.05cm},$$
- $$\varphi_2(t) =\frac{s_2(t)}{\sqrt{E_2} } = \frac{s_2(t)}{\sqrt{(A/2)^2 \cdot T} } = \frac{1}{\sqrt{ T} } \cdot \frac{s_2(t)}{A/2}\hspace{0.05cm}$$
- $$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_2(t) = s_{21} \cdot \varphi_2(t)\hspace{0.05cm},\hspace{0.1cm}s_{21} = {\sqrt{E} }/{2}\hspace{0.05cm}.$$
- Das Signal $s_3(t)$ kann durch die vorher bestimmten Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$ ausgedrückt werden:
- $$s_3(t) =s_{31} \cdot \varphi_1(t) + s_{32} \cdot \varphi_2(t)\hspace{0.05cm},$$
- $$\hspace{0.5cm}\Rightarrow \hspace{0.1cm} s_{31} = {A}/{2} \cdot \sqrt {T}= {\sqrt{E} }/{2}\hspace{0.05cm}, \hspace{0.2cm}s_{32} = - A \cdot \sqrt {T} = -\sqrt{E} \hspace{0.05cm}.$$
Trotz $M=3$ gilt also im vorliegenen Fall nur $N=2$.
Im rechten unteren Bild sind die Signale in einer 2D–Darstellung mit den Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$ als Achsen dargestellt, wobei $E = A^2 \cdot T$ gilt und der Zusammenhang zu den anderen Grafiken durch die Farbgebung zu erkennen ist.
Die vektoriellen Repräsentanten der Signale $s_1(t)$, $s_2(t)$ und $s_3(t)$ in diesem zweidimensionellen Vektorraum lassen sich daraus wie folgt ablesen:
- $$\mathbf{s}_1 = (\sqrt{ E}, \hspace{0.1cm}0), \hspace{0.5cm} \mathbf{s}_2 = (0, \hspace{0.1cm}\sqrt{ E}/2), \hspace{0.5cm} \mathbf{s}_3 = (\sqrt{ E}/2,\hspace{0.1cm}-\sqrt{ E} ) \hspace{0.05cm}.$$
Das Verfahren nach Gram-Schmidt
Im letzten $\text{Beispiel}$ war die Bestimmung der beiden orthonormalen Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$ sehr einfach, da diese formgleich mit $s_1(t)$ bzw. $s_2(t)$ waren. Das Gram–Schmidt–Verfahren findet die Basisfunktionen $\varphi_1(t)$, ... , $\varphi_N(t)$ für beliebig vorgebbare Signale $s_1(t)$, ... , $s_M(t)$, und zwar wie folgt:
- Die erste Basisfunktion $\varphi_1(t)$ ist stets formgleich mit $s_1(t)$. Es gilt:
- $$\varphi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{|| s_1(t)||} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_1(t) || = 1, \hspace{0.2cm}s_{11} =|| s_1(t)||,\hspace{0.2cm}s_{1j} = 0 \hspace{0.2cm}{\rm f{\rm \ddot{u}r }}\hspace{0.2cm} j \ge 2 \hspace{0.05cm}.$$
$\text{Hinweise zur Nomenklatur:}$
(1) Ausgehend von zwei reellen und energiebegrenzten Zeitfunktionen $x(t)$ und $y(t)$ erhält man für das innere Produkt allgemein:
- $$<\hspace{-0.01cm}x(t), \hspace{0.05cm}y(t) \hspace{-0.01cm}> \hspace{0.15cm}= \int_{-\infty}^{+\infty}x(t) \cdot y(t)\,d \it t \hspace{0.05cm}.$$
(2) Daraus ergibt sich die Euklidische Norm der Zeitfunktion $s_1(t)$:
- $$\vert \vert s_1(t) \vert \vert = \sqrt{<\hspace{-0.01cm}s_1(t), \hspace{0.15cm}s_1(t) \hspace{-0.01cm}>} $$
Es wird nun angenommen, dass aus den Signalen $s_1(t)$, ... , $s_{k-1}(t)$ bereits die Basisfunktionen $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$ berechnet wurden $(n \le k)$.
- Dann berechnen wir mittels der nächsten Funktion $s_k(t)$ die Hilfsfunktion
- $$\theta_k(t) = s_k(t) - \sum\limits_{j = 1}^{n-1}s_{kj} \cdot \varphi_j(t) \hspace{0.4cm}{\rm mit}\hspace{0.4cm} s_{kj} = \hspace{0.01cm} < \hspace{-0.1cm} s_k(t), \hspace{0.05cm}\varphi_j(t) \hspace{-0.01cm} >, \hspace{0.2cm} j = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm}, n-1\hspace{0.05cm}.$$
- Hat diese Hilfsfunktion die Norm $||\theta_k(t)|| = 0$, so liefert $s_k(t)$ keine neue Basisfunktion. Vielmehr lässt sich dann $s_k(t)$ durch die $n-1$ bereits vorher gefundenen Basisfunktionen $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$ ausdrücken:
- $$s_k(t) = \sum\limits_{j = 1}^{n-1}s_{kj}\cdot \varphi_j(t) \hspace{0.05cm}.$$
- Eine neue Basisfunktion (nämlich die $n$–te) ergibt sich nur für den Fall $||\theta_k(t)|| \ne 0$:
- $$\varphi_n(t) = \frac{\theta_k(t)}{|| \theta_k(t)||} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_n(t) || = 1\hspace{0.05cm}.$$
Diese Prozedur wird solange fortgesetzt, bis alle $M$ Signale berücksichtigt wurden.
- Danach hat man alle $N \le M$ orthonormalen Basisfunktionen $\varphi_j(t)$ gefunden.
- Der Sonderfall $N = M$ ergibt sich nur dann, wenn alle $M$ Signale linear voneinander unabhängig sind.
$\text{Beispiel 2:}$ Wir betrachten die $M = 4$ energiebegrenzten Signale $s_1(t)$, ... , $s_4(t)$ entsprechend der Grafik. Zur Vereinfachung der Berechnungen sind hier sowohl die Amplituden als auch die Zeit normiert.
Man erkennt aus diesen Skizzen:
- Die Basisfunktion $\varphi_1(t)$ ist formgleich mit $s_1(t)$. Wegen $E_1 = \vert \vert s_1(t) \vert \vert ^2 = 3 \cdot 0.5^2 = 0.75$ ergibt sich $s_{11} = \vert \vert s_1(t) \vert \vert = 0.866$. $\varphi_1(t)$ selbst besitzt abschnittsweise die Werte $\pm 0.5/0.866 = \pm0.577$.
- Zur Berechnung der Hilfsfunktion $\theta_2(t)$ berechnen wir
- $$s_{21} = \hspace{0.1cm} < \hspace{-0.01cm} s_2(t), \hspace{0.05cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.01cm} = 0 \cdot (+0.577) + 1 \cdot (-0.577)+ 0 \cdot (-0.577)= -0.577$$
- $$ \Rightarrow \hspace{0.3cm}\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = (0.333, \hspace{0.15cm} 0.667, \hspace{0.15cm} -0.333) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\vert \vert \theta_2(t) \vert \vert^2 = (1/3)^2 + (2/3)^2 + (-1/3)^2 = 0.667$$
- $$ \Rightarrow \hspace{0.3cm} s_{22} = \sqrt{0.667} = 0.816,\hspace{0.3cm} \varphi_2(t) = \theta_2(t)/s_{22} = (0.408, \hspace{0.15cm} 0.816, \hspace{0.15cm} -0.408)\hspace{0.05cm}. $$
- Die inneren Produkte zwischen $s_1(t)$ mit $\varphi_1(t)$ bzw. $\varphi_2(t)$ liefern folgende Ergebnisse:
- $$s_{31} \hspace{0.01cm} = \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_1(t) \hspace{-0.01cm} > \hspace{0.1cm} = 0.5 \cdot (+0.577) + 0.5 \cdot (-0.577)- 0.5 \cdot (-0.577)= 0.289,$$
- $$s_{32} \hspace{0.1cm} = \hspace{0.01cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_2(t) \hspace{-0.01cm} > \hspace{0.1cm} = 0.5 \cdot (+0.408) + 0.5 \cdot (+0.816)- 0.5 \cdot (-0.408)= 0.816$$
- $$\Rightarrow \hspace{0.3cm}\theta_3(t) = s_3(t) - 0.289 \cdot \varphi_1(t)- 0.816 \cdot \varphi_2(t) = 0\hspace{0.05cm}.$$
Das bedeutet: Die grüne Funktion $s_3(t)$ liefert keine neue Basisfunktion $\varphi_3(t)$, im Gegensatz zur Funktion $s_4(t)$. Die numerischen Ergebnisse hierfür können der Grafik entnommen werden.
Die verschiedenen Rubriken bei der Auswahl der Programmparameter
Das Programm bietet insgesamt $4 \cdot 6 = 24$ Möglichkeiten zur Einstellung der jeweiligen Menge $\{s_i(t)\}$ möglicher Sendesignale. Diese $24$ Parametersätze sind in vier Rubriken eingeteilt. Die vier Rubriküberschriften treffen den Sachverhalt nicht hundertprozentig und sind deshalb in Hochkommata gesetzt:
(1) Rubrik „Basisband” ⇒ gültig für die Einstellungen $\rm (A)$ ... $\rm (F)$:
- Jedes Mustersignal $s_i(t)$ besteht aus drei Rechteckfunktionen unterschiedlicher Höhen und jeweiliger Dauer $T$.
- Die einzelnen Rechteckhöhen sind Vielfache von $\pm 0.25$ und die gesamte Signaldauer ergibt $3T$.
- Mit dem seitlichen Slider kann man das Signal $s_i(t)$ um Vielfache von $\pm 0.25$ nach oben und unten verschieben.
- Solche Signale treten zum Beispiel bei der binären oder mehrstufigen Basisbandübertragung auf.
- Im $\text{Beispiel 2}$ des hier angegebenen Links erkennt man zum Beispiel die grafischen Darstellungen
- eines binären Signals $q(t)$,
- eines ternären Signals $s_3(t)$,
- eines quaternären Signals $s_4(t)$.
(2) Rubrik „M–ASK / BPSK” ⇒ gültig für die Einstellungen $\rm (G)$ ... $\rm (L)$:
- Die Mustersignale $s_i(t)$ haben ebenfalls die Dauer $3T$ und sind ähnlich aufgebaut wie bei der Rubrik (1).
- Im Unterschied zu (1) wird jede Rechteckfunktion $($Dauer $T)$ durch eine Periode einer Sinusfunktionen ersetzt.
- Der angegebene Zahlenwert gibt hier die Amplitude des sinusförmigen Teilstücks an.
- Bei negativem Vorzeichen wird aus dem „Sinus” die Funktion „Minus–Sinus”.
- Mit dem seitlichen Slider kann man die Amplitude von $s_i(t)$ um Vielfache von $\pm 0.25$ vergrößern oder verkleinern.
- Solche Signale können zum Beispiel bei der M–ASK (mehrstufiges Amplitude Shift Keying) auftreten, ebenso bei BPSK (Binary Phase Shift Keying).
(3) Rubrik „Nur eine Frequenz” ⇒ gültig für die Einstellungen $\rm (M)$ ... $\rm (R)$:
- Alle Mustersignale $s_i(t)$ haben die Dauer $T$ und sind jeweils Harmonische Schwingungen der Form
- $$s_i(t) = A_i \cdot \cos(2\pi \cdot f_i \cdot t + \phi_i)\hspace{0.3cm}\text{mit}\hspace{0.3cm}f_i=K_i/T.$$
- Der Parameter $K_i$ gibt die Anzahl der Schwingungen innerhalb der Periodendauer $T$ an.
- Die Grafik gilt für: $A_i=0.75, \hspace{0.3cm}f_i= 4/T \hspace{0.3cm}\Rightarrow\hspace{0.3cm}K_i=4, \hspace{0.3cm}\phi=- 90^\circ$ ⇒ sinusförmiger Verlauf.
- Die Eigenschaft „Nur eine Frequenz” bezieht sich auf die einzelnen Mustersignale $s_i(t)$. Die $M$ Signalformen eines Sets können durchaus unterschiedliche Frequenzen $f$ aufweisen.
- Mit dem Slider lässt sich die Phase von $s_i(t)$ um Vielfache von $\pm 22.5^\circ$ in beide Richtungen variieren.
- Solche Harmonische haben für alle (analogen und digitalen) Nachrichtensysteme große Bedeutung.
(4) Rubrik „Mehrere Frequenzen” ⇒ gültig für die Einstellungen $\rm (S)$ ... $\rm (X)$:
- Es gelten ähnliche Voraussetzungen wie für die „Rubrik 3”, es sind aber nun stets mehrere Frequenzen beteiligt.
- Die Eigenschaft „Mehrere Frequenzen” bezieht sich auf einzelne Mustersignale $s_i(t)$ oder auch auf den gesamten Set $\{s_i(t)\}$.
- Möglich sind somit auch Mustersignale der folgenden Form $($mit $k=0$ ⇒ $f=f_0 = k/T = 0$ ⇒ Gleichsignal$)$:
- $$s_i(t) = 1 \cdot \cos(2\pi \cdot f_0 \cdot t) - 0.5 \cdot \cos(2\pi \cdot f_2 \cdot t)-0.5 \cdot \cos(2\pi \cdot f_3 \cdot t).$$
- Der Parameter $k$ muss auch nicht ganzzahlig sein. Beispielsweise kennzeichnet $k= 4.5$ viereinhalb Schwingunen Schwingungen innerhalb der Zeitdauer $T$.
- Mit dem Slider können die Frequenzkenngrößen $k$ um Vielfache von $0.25$ vergrößert oder verkleinert werden.
Versuchsdurchführung
- Wählen Sie zunächst die Nummer (1, ...) der zu bearbeitenden Aufgabe.
- Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
- Lösung nach Drücken von „Musterlösung”.
Die Nummer 0 entspricht einem „Reset”:
- Gleiche Einstellung wie beim Programmstart.
- Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet.
(1) Es gilt die Einstellung $\rm A$. Interpretieren Sie die ausgegebenen Grafiken. Wählen Sie hierfür „Einzelschritt”.
- Einstellung $\rm A$ beschreibt das $\text{Beispiel 2}$ im Theorieteil. Die Basisfunktion $\varphi_1(t)$ ist identisch mit dem Signal $s_1(t)$, aber mit Signalenergie $E=1$.
- Es gibt hier nur $N=3$ Basisfunktionen, da die Hilfsfunktion $\theta_3(t)$ identisch Null ist.
- Die vektoriellen Repräsentanten der Signale $s_1(t)$, ... , $s_4(t)$ können im 3D–Vektorraum abgelesen werden; Beispiel: $\mathbf{s}_4 = (-1.444, \hspace{0.15cm} -0.408, \hspace{0.15cm} +0.707)$.
(2) Interpretieren Sie die ausgegebenen Grafiken für die Einstellung $\rm B$. Wählen Sie hierfür und bei den weiteren Aufgaben „Gesamtdarstellung”.
- Auch hier gibt es $N=3$ Basisfunktionen. Bei Änderung auf $s_4 = (-1, \hspace{0.15cm} -1, \hspace{0.25cm} 0)$ nur mehr $N=2$.
(3) Bei der Einstellung $\rm C$ ist die Reihenfolge der Signale gegenüber $\rm B$ vertauscht. Wie wirkt sich das auf die Basisfunktionen aus?
- Auch hier gibt es $N=3$ Basisfunktionen, aber nun andere: Nämlich $\varphi_1(t) = s_1(t)$, $\varphi_2(t) = s_2(t)$, $\varphi_3(t) = s_3(t)$.
(4) Die $M=4$ Signale der Einstellung $\rm D$ lassen sich durch nur $N=2$ Basisfunktionen ausdrücken? Begründen Sie dieses Ergebnis.
- Es gilt $s_3(t) = s_1(t)/4 - s_2(t)/2$ und $s_4(t) = -s_1(t) - s_2(t)$. Das heißt: $s_3(t)$ und $s_4(t)$ liefern keine neuen Basisfunktionen.
(5) Interpretieren Sie die ausgegebenen Grafiken für die Einstellung $\rm E$ im Vergleich zur Einstellung $\rm D$.
- Bei der Einstellung $\rm E$ ist die Reihenfolge der Signale gegenüber der Einstellung $\rm D$ vertauscht. Ähnlich wie zwischen $\rm B$ und $\rm C$.
- Auch diese $M=4$ Signale lassen sich somit durch nur $N=2$ Basisfunktionen ausdrücken, aber durch andere als in der Aufgabe (4).
(6) Welches Ergebnis liefern die vier Signale gemäß der Einstellung $\rm F$?
- Die die Signale $s_1(t)$, ... , $s_4(t)$ basieren alle auf einer einzigen Basisfunktion $\varphi_1(t)$, die formgleich mit $s_1(t)$ ist. Es gilt $N=1$.
- Die vektoriellen Repräsentanten der Signale $s_1(t)$, ... , $s_4(t)$ sind $\pm 0.866$ und $\pm 1.732$. Sie liegen inder 2D–Darstellung alle auf einer Linie.
(7) Es gilt nun die „M–ASK / BPSK”–Einstellung $\rm G$. Interpretieren Sie das Ergebnis und versuchen Sie, einen Zusammenhang zu einer früheren Aufgabe herzustellen.
- Vergleicht man die angegebenen Zahlenwerte, so erkennt man, dass eine ähnliche Konstellation betrachtet wird wie bei der „Basisband”–Einstellung $\rm A$.
- Der einzige Unterschied ist, dass nun alle Energien nur halb so groß sind wie vorher. Bezüglich der Amplituden wirkt sich das um den Faktor $\sqrt{2}$ aus.
- Somit ist nun der vektorielle Repräsentant des unteren Signals $\mathbf{s}_4 = (-1.021, \hspace{0.15cm} -0.289, \hspace{0.15cm} +0.500)$ anstelle von $\mathbf{s}_4 = (-1.444, \hspace{0.15cm} -0.408, \hspace{0.15cm} +0.707)$.
- Bei der Einstellung $\rm H$ sind gegenüber $\rm G$ alle Amplituden verdoppelt. Somit ergibt sich hier $\mathbf{s}_4 = (-2.041, \hspace{0.15cm} -0.577, \hspace{0.15cm} +1.000)$.
(8) Es gelte die „M–ASK / BPSK”–Einstellung $\rm I$. Interpretieren Sie das Ergebnis. Versuchen Sie wieder, einen Zusammenhang zu einer früheren Aufgabe herzustellen.
- Hier wird eine ähnliche Konstellation betrachtet wird wie bei der „Basisband”–Einstellung $\rm C$, aber nun mit nur halb so großen Energien.
- Somit ist nun der vektorielle Repräsentant des unteren Signals $\mathbf{s}_4 = (+0.707, \hspace{0.15cm} -0.707, \hspace{0.15cm} 0.000)$ anstelle von $\mathbf{s}_4 = (+1.000, \hspace{0.15cm} -1.000, \hspace{0.15cm} 0.000)$.
- Somit ist nun der vektorielle Repräsentant des unteren Signals $\mathbf{s}_4 = (+0.707, \hspace{0.15cm} -0.707, \hspace{0.15cm} 0.000)$ anstelle von $\mathbf{s}_4 = (+1.000, \hspace{0.15cm} -1.000, \hspace{0.15cm} 0.000)$.
- Mit der „M–ASK / BPSK”–Einstellung $\rm J$ wird eine ähnliche Konstellation betrachtet wie mit der „Basisband”–Einstellung $\rm D$. Gleiches gilt für $\rm K$ und $\rm E$.
(9) Es gelte die „M–ASK / BPSK”–Einstellung $\rm L$. Interpretieren Sie das Ergebnis. Gibt es einen Zusammenhang zu einer früheren Aufgabe?
- Die Einstellung $\rm L$ ist vergleichbar mit der obigen Einstellung $\rm F$. Es gilt $N=1$. Das heißt:
- Alle $M=4$ Signale sind allein durch die Basisfunktion $\varphi_1(t)$ darstellbar, die formgleich mit $s_1(t)$ ist.
(10) Es gelte die „Nur eine Frequenz”–Einstellung $\rm M$. Interpretieren Sie die dargestellten Grafiken.
- Alle Signale $s_i(t)$ haben die Amplitude $A_i = 1$ und gleiche Frequenz $f=f_1$. Das heißt:
- Die Phasen sind $\phi_1 = +45^\circ$, $\phi_2 = +135^\circ$, $\phi_3 = -135^\circ$ und $\phi_4 = -45^\circ$.
- Die $M=4$ Signale lassen sich durch nur $N=2$ Basisfunktionen ausdrücken. Dies gilt für (fast) alle Einstellungen der dritten Rubrik.
- Die Basisfunktion $\varphi_1(t)$ ist formgleich mit $s_1(t)$ und $\varphi_2(t)$ formgleich mit $s_2(t)$. Auch dies gilt für die meisten Einstellungen der dritten Rubrik.
(11) Welche Unterschiede gibt es mit der Einstellung $\rm N$ gegenüber der Einstellung $\rm M$?
- Die vier Mustersignale $s_i(t)$ beschreiben nun von oben nach unten einen Cosinus, einen Sinus, einen Minus–Cosinus und einen Minus–Sinus.
- Für die $N=2$ Basisfunktionen gilt: $\varphi_1(t) = \sqrt{2} \cdot \cos(2\pi f_1 t)$, $\varphi_2(t) = \sqrt{2} \cdot\sin(2\pi f_1 t)$. Auch $s_3(t)$ und $s_4(t)$ lassen sich damit beschreiben.
- Die vektoriellen Repräsentanten der Signale lauten: $\mathbf{s}_1 = (0.707, \hspace{0.15cm} 0)$, $\mathbf{s}_2 = (0, \hspace{0.15cm} 0.707)$, $\mathbf{s}_3 = (-0.707, \hspace{0.15cm} 0)$, $\mathbf{s}_4 = (0, \hspace{0.15cm} -0.707)$.
(12) Wie unterscheidet sich die Einstellung $\rm O$ von der Einstellung $\rm N$? Welche Unterschiede gibt es demgegenüber mit der Einstellung $\rm P$
- Das Signal $s_2(t)$ bei Einstellung $\rm O$ ist minus–sinusförmig ⇒ $\varphi_1(t) = \sqrt{2} \cdot \cos(2\pi f_1 t)$, $\varphi_2(t) = -\sqrt{2} \cdot\sin(2\pi f_1 t)$.
- Für die Darstellung Harmonischer Schwingungen werden häufig diese Basisfunktionen „Cosinus” und „Minus–Sinus” verwendet.
- Außerdem unterscheiden sich die Signale $s_3(t)$ und $s_4(t)$ durch die halbe Amplitude und die Phsenwerte sind keine Vielfachen von $90^\circ$.
- Die vektoriellen Repräsentanten der Signale lauten: $\mathbf{s}_1 = (0.707, \hspace{0.15cm} 0)$, $\mathbf{s}_2 = (0, \hspace{0.15cm} 0.707)$, $\mathbf{s}_3 = (???, \hspace{0.15cm} ???)$, $\mathbf{s}_4 = (???, \hspace{0.15cm} ???7)$.
- Mit der Einstellung $\rm P$ ergeben sich gleiche vektorielle Repräsentanten. Einziger Unterschied zurEinstellung $\rm O$ ist die doppelte Frequenz. Stimmt das?
Zur Handhabung des Applets
(A) Auswahl: Codierung
(binär, quaternär, AMI–Code, Duobinärcode)
(B) Auswahl: Detektionsgrundimpuls
(nach Gauß–TP, CRO–Nyquist, nach Spalt–TP}
(C) Prametereingabe zu (B)
(Grenzfrequenz, Rolloff–Faktor, Rechteckdauer)
(D) Steuerung der Augendiagrammdarstellung
(Start, Pause/Weiter, Einzelschritt, Gesamt, Reset)
(E) Geschwindigkeit der Augendiagrammdarstellung
(F) Darstellung: Detektionsgrundimpuls $g_d(t)$
(G) Darstellung: Detektionsnutzsignal $d_{\rm S}(t - \nu \cdot T)$
(H) Darstellung: Augendiagramm im Bereich $\pm T$
( I ) Numerikausgabe: $ö_{\rm norm}$ (normierte Augenöffnung)
(J) Prametereingabe $10 \cdot \lg \ E_{\rm B}/N_0$ für (K)
(K) Numerikausgabe: $\sigma_{\rm norm}$ (normierter Rauscheffektivwert)
(L) Numerikausgabe: $p_{\rm U}$ (ungünstigste Fehlerwahrscheinlichkeit)
(M) Bereich für die Versuchsdurchführung: Aufgabenauswahl
(N) Bereich für die Versuchsdurchführung: Aufgabenstellung
(O) Bereich für die Versuchsdurchführung: Musterlösung einblenden
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2008 von Thomas Großer im Rahmen einer Werkstudententätigkeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder).
- 2019 wurde das Programm von Carolin Mirschina im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer: Tasnád Kernetzky).
Die Umsetzung dieses Applets auf HTML 5 wurde durch Studienzuschüsse der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.