Aufgabe 3.8: OVSF–Codes

Aus LNTwww
Version vom 17. August 2020, 16:42 Uhr von Guenter (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Baumstruktur zur Konstruktion
eines OVSF–Codes

Die Spreizcodes für UMTS sollten

  • orthogonal sein, um dadurch eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
  • gleichzeitig auch eine flexible Realisierung unterschiedlicher Spreizfaktoren  $J$  ermöglichen.


Ein Beispiel hierfür sind die  „Codes mit variablem Spreizfaktor”  (englisch:  Orthogonal Variable Spreading Factor, OVSF), die Spreizcodes der Längen von  $J = 4$  bis  $J = 512$  bereitstellen.

Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden.  Dabei entstehen bei jeder Verzweigung aus einem Code  $\mathcal{C}$  zwei neue Codes  $(+\mathcal{C}\ +\mathcal{C})$  und  $(+\mathcal{C} \ –\mathcal{C})$.

Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel  $J = 4$.  Nummeriert man die Spreizfolgen von  $0$  bis  $J –1$  durch, so ergeben sich hier die Spreizfolgen

$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$

Gemäß dieser Nomenklatur gibt es für den Spreizfaktor  $J = 8$  die Spreizfolgen  $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle.$

Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf.

  • Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor  $J = 4$  verwendet werden, oder
  • die drei gelb hinterlegten Codes – einmal mit  $J = 2$  und zweimal mit  $J = 4$.





Hinweise:


Fragebogen

1

Konstruieren Sie das Baumdiagramm für  $J = 8$.  Welche OVSF–Codes ergeben sich daraus?

$\langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$,
$\langle c_\nu^{(3)}\rangle = +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$,
$\langle c_\nu^{(5)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1$,
$\langle c_\nu^{(7)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$.

2

Wieviele UMTS–Teilnehmer können mit  $J = 8$  maximal bedient werden?

$K_{\rm max} \ = \ $

3

Wieviele Teilnehmer können mit  $J = 8$  versorgt werden, wenn drei von ihnen einen Spreizcode mit  $J = 4$  verwenden sollen?

$K \ = \ $

4

Die Baumstruktur gelte für  $J = 32$.  Ist dann folgende Zuweisung machbar:   Zweimal  $J = 4$, einmal  $J = 8$, eimal  $J = 164$  und achtmal  $J = 32$?

Ja.
Nein.


Musterlösung

OVSF–Baumstruktur für  $J = 8$

(1)  Die folgende Grafik zeigt die OVSF–Baumstruktur für  $J = 8$  Nutzer.

  • Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.


(2)  Wird jedem Nutzer ein Spreizcode mit dem Spreizgrad  $J = 8$  zugewiesen, so können  $K_{\rm max} \ \underline{= 8}$  Teilnehmer versorgt werden.


(3)  Wenn drei Teilnehmer mit  $J = 4$  versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit  $J = 8$  bedient werden  (siehe beispielhafte gelbe Hinterlegung in der Grafik)  $\ \Rightarrow \ \ \underline{K = 5}$.


(4)  Wir bezeichnen mit

  • $K_{4} = 2$  die Anzahl der Spreizfolgen mit  $J = 4$,
  • $K_{8} = 1$  die Anzahl der Spreizfolgen mit  $J = 8$,
  • $K_{16} = 2$  die Anzahl der Spreizfolgen mit  $J = 16$,
  • $K_{32} = 8$  die Anzahl der Spreizfolgen mit  $J = 32$,


Dann muss folgende Bedingung erfüllt sein:

$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
  • Wegen  $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$  ist die gewünschte Belegung gerade noch erlaubt   ⇒   Antwort JA.
  • Die zweimalige Bereitstellung des Spreizgrads  $J = 4$  blockiert zum Beispiel die obere Hälfte des Baums, nach der Bereitstellung eines Spreizcodes mit  $J = 8$  bleiben auf der  $J = 8$–Ebene noch drei der acht Äste zu belegen, und so weiter und so fort.