Aufgabe 4.6: Ortskurve bei ESB-AM
Wir betrachten wie in Aufgabe Z4.4 das analytische Signal s+(t) mit der Spektralfunktion
$$S_{\rm +}(f) = 1 \cdot \delta (f - f_{\rm 50})- {\rm j} \cdot \delta (f - f_{\rm 60}) .$$
Hierbei stehen f50 und f60 als Abkürzungen für die Frequenzen 50 kHz bzw. 60 kHz. In dieser Aufgabe soll der Verlauf des äquivalenten Tiefpass-Signals sTP(t) analysiert werden, das in diesem Tutorial auch als Ortskurve bezeichnet wird. In den Aufgaben (a) bis (c) gehen wir davon aus, dass das Signal s(t) durch eine Einseitenband-Amplitudenmodulation des sinusförmigen Nachrichtensignals der Frequenz fN = 10 kHz mit cosinusförmigem Träger bei fT = f50 entstanden ist, wobei nur das obere Seitenband (OSB) übertragen wird. Dagegen wird bei der Teilaufgabe (d) von der Trägerfrequenz fT = f60 ausgegangen. Diese Annahme setzt voraus, dass eine USB-Modulation stattgefunden hat. Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 4.3. Sie können Ihre Lösung mit dem folgenden Interaktionsmodul überprüfen: Ortskurve – Darstellung des äquivalenten Tiefpass-Signals
Fragebogen
Musterlösung
1. a) Das Spektrum des äquivalenten TP–Signals lautet mit der Trägerfrequenz fT = f50:
$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 50}) = 1 \cdot \delta (f)- {\rm j} \cdot \delta (f - f_{\rm 10}) .$$
Damit ergibt sich für das dazugehörige Zeitsignal:
$$s_{\rm TP}(t) = {\rm 1 } - {\rm j} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$
Ausgehend vom Punkt (1, –j) verläuft sTP(t) auf einem Kreis mit dem Mittelpunkt (1, 0) und dem Radius 1. Die Periodendauer ist gleich dem Kehrwert der Frequenz: T0 = 1/f10 = 100 μs ⇒ Antwort 2. b) Spaltet man obige Gleichung nach Real- und Imaginäranteil auf, so erhält man:
$$s_{\rm TP}(t) = {\rm 1 } + \sin({ \omega_{\rm 10} \hspace{0.05cm} t }) -{\rm j}\cdot \cos({ \omega_{\rm 10} \hspace{0.05cm} t }).$$
Dies führt zur Betragsfunktion
$$a(t)& = & |s_{\rm TP}(t)|=\sqrt{{\rm Re}\left[s_{\rm TP}(t)\right]^2 + {\rm Im}\left[s_{\rm TP}(t)\right]^2 }= \\ & = & \sqrt{1 + 2 \sin(\omega_{\rm 10}\hspace{0.05cm} t)+ \sin^2(\omega_{\rm 10}\hspace{0.05cm} t)+ \cos^2(\omega_{\rm 10}\hspace{0.05cm} t)} = \sqrt{2 \cdot ( 1 + \sin(\omega_{\rm 10}\hspace{0.05cm} t))}.$$
Der Maximalwert ergibt sich aus sin(ω10 · t) ≤ 1 zu amax = 2. Für den Minimalwert erhält man unter Berücksichtigung von sin(ω10 · t) ≥ –1: amin = 0. Bei t = 0 ist der Betrag gleich „Wurzel aus 2” = 1.414. c) Entsprechend der allgemeinen Definition gilt:
$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}= {\rm arctan} \hspace{0.1cm}\frac{-\cos(\omega_{\rm 10}\hspace{0.05cm} t)}{1 + \sin(\omega_{\rm 10}\hspace{0.05cm} t)}.$$
Für t = 0 ist cos(ω10 · t) = 1 und sin(ω10 · t) = 0 und man erhält:
$$\phi(t = 0)= {\rm arctan} (-1) \hspace{0.15 cm}\underline{= -45^\circ}.$$
Dagegen gilt für t = 25 μs = T0/4:
$$\cos(\omega_{\rm 10}\hspace{0.05cm} t) = 0; \hspace{0.2cm}\sin(\omega_{\rm 10}\hspace{0.05cm} t) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = {\rm 25 \hspace{0.05cm} \mu s}) \hspace{0.15 cm}\underline{= 0}.$$
Die beiden Winkel kann man auch aus obiger Grafik ablesen. Der Phasenwert bei t = 75 μs muss durch Grenzübergang bestimmt werden, da hier sowohl der Real- als auch der Imaginärteil 0 werden und somit das Argument der arctan–Funktion unbestimmt ist. Man erhält ϕ(t = 75 μs) = 0. Dieses Ergebnis soll hier numerisch hergeleitet werden. Berechnet man die Phasenfunktion für t = 74 μs, so erhält man mit ω10 · t = 1.48 π = 266.4°:
$$\phi(t = {\rm 74 \hspace{0.05cm} \mu s})= {\rm arctan} \hspace{0.1cm}\frac{\cos(86.4^\circ)}{1 - \sin(86.4^\circ)} = {\rm arctan} \hspace{0.1cm}\frac{0.062}{1 - 0.998} \approx {\rm arctan}(31)\approx 88^\circ.$$
Entsprechend gilt für t = 76 μs mit ω10 · t = 1.52 π = 273.6 °:
$$\phi(t = {\rm 76 \hspace{0.05cm} \mu s})= {\rm arctan} \hspace{0.1cm}\frac{-\cos(86.4^\circ)}{1 - \sin(86.4^\circ)} \approx {\rm arctan}(-31)\approx -88^\circ.$$
Diese Zahlenwerte lassen darauf schließen, dass die Grenzwerte für t → 75 μs sich zu ±90° ergeben, je nachdem, ob man sich diesem Wert von oben oder unten nähert. Der Phasenwert bei exakt t = 75 μs ist gleich dem Mittelwert zwischen rechts- und linksseitigem Grenzwert, also 0.
d) Nun lauten die Gleichungen für Zeit– und Frequenzbereich:
$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 60}) = -{\rm j} \cdot \delta (f) + \delta (f + f_{\rm 10}) .$$
$$s_{\rm TP}(t) = - {\rm j} + 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$
In der Grafik ist sTP(t) dargestellt. Man erkennt: Die Ortskurve ist wiederum ein Kreis mit Radius 1, aber nun mit Mittelpunkt (0, –j). Es gilt auch hier sTP(t = 0) = 1 – j. Man bewegt sich nun auf der Ortskurve im Uhrzeigersinn. Die Periodendauer beträgt weiterhin T0 = 1/f10 = 100 μs. Die Ortskurve ist gegenüber Punkt a) nur um 90° in der komplexen Ebene gedreht. Für alle Zeiten ergeben sich die gleichen Zeigerlängen wie für fT = f50. Der Betrag bleibt gleich. Die Phasenfunktion ϕ(t) liefert nun Werte zwischen –π und 0, während die in der Teilfrage c) berechnete Phasenfunktion Werte zwischen –π/2 und +π/2 angenommen hat. Es gilt:
$$\phi_d(t )= -(\phi_c(t) + 90^\circ).$$
Richtig sind somit der erste und der dritte Lösungsvorschlag.