Aufgabe 3.10: Transinformation beim BSC

Aus LNTwww
Wechseln zu:Navigation, Suche

P ID2787 Inf A 3 9.png

Wir betrachten den $Binary$ $Symmetric$ $Channel$ (BSC). Für die gesamte Aufgabe gelten die Parameterwerte:

  • Verfälschungswahrscheinlichkeit: $\epsilon = 0.1$
  • Wahrscheinlichkeit für $0$: $p_0 = 0.2$,
  • Wahrscheinlichkeit für $1$: $p_1 = 0.8$.

Damit lautet die Wahrscheinlichkeitsfunktion der Quelle:

$P_X(X)= (0.2 , 0.8)$

und für die Quellenentropie gilt:

$H(X) = p_0 . log_2 \frac{1}{p_0} + p_1 . log_2 \frac{1}{p_1} = H_{bin}(0.2) = 0.7219 (bit)$

In der Aufgabe sollen ermittelt werden:

  • die Wahrscheinlichkeitsfunktion der Sinke:

$P_Y(Y) = (P_Y(0) , P_Y(1))$,

  • die Verbundwahrscheinlichkeitsfunktion :

$P_{XY}(X, Y) = \begin{pmatrix} p_{00} & p_{01}\\ p_{10} & p_{11} \end{pmatrix} \hspace{0.05cm}$

  • die Transinformation

$I(X;Y) = E[ log_2 \frac{P_{ XY }(X,Y)}{P_X(X) . P_Y(Y)}]$,

  • die Äquivokation:

$H(X \mid Y) = E[log_2 \frac{1}{P_{ X \mid Y }(X \mid Y)}]$,

  • die Irrelevanz:

$H(Y \mid X) = E[log_2 \frac{1}{P_{ Y \mid X }(Y \mid X)}]$

Hinwies: Die Aufgabe gehört zu Kapitel 3.3. In der Aufgabe Z3.9 wird die Kanalkapazität $C_{ BSC }$ des $BSC$–Modells berechnet. Diese ergibt sich als die maximale Transinformation $I(X; Y)$ durch Maximierung bezüglich der Symbolwahrscheinlichkeiten $p_0$ bzw. $p_1 = 1 – p_0$.




Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.