Aufgabe 3.14: Kanalcodierungstheorem
Shannons Kanalcodierungstheorem besagt, dass über einen diskreten gedächtnislosen Kanal (DMC) mit der Coderate $R$ fehlerfrei übertragen werden kann, so lange $R$ nicht größer ist als die Kanalkapazität $$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$ Das Kanalcodierungstheorem soll in dieser Aufgabe numerisch ausgewertet werden, wobei zwei typische Kanalmodelle zu betrachten sind:
- das $\text{BSC–Modell}$ (Binary Symmetric Channel) mit Verfälschungswahrscheinlichkeit $ε = 0.25$ und der Kanalkapazität $C = 1 – H_{bin}(ε),$
- das sog. $\text{EUC–Modell}$ (Extremely Unsymmetric Channel) entsprechend der Aufgabe Z3.10 (diese Bezeichnung ist nicht allgemein üblich)
Hinweis: Diese Aufgabe gehört zum Themengebiet von Kapitel 3.3. Die Grafiken zeigen die numerischen Werte der informationstheoretischen Größen für die beiden Kanäle „BSC” und „EUC”:
- der Quellenentropie $H(X),$
- der Äquivokation $H(X|Y),$
- der Transinformation $I(X; Y),$
- der Irrelevanz $H(Y|X),$ und
- der Sinkenentropie $H(Y).$
Der Parameter in diesen Tabellen ist $p_0 = Pr(X = 0)$ im Bereich von $0.3$ bis $0.7.$ Entsprechend gilt für die Wahrscheinlichkeit des Quellensymbols „1”: $p_1 = 1 – p_0$
Fragebogen
Musterlösung