Aufgabe 2.3: Summe von Binärzahlen
Aus LNTwww
Version vom 1. September 2016, 17:02 Uhr von Nabil (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Binomialverteilung }} right| :Ein Zufallsgenerator gibt zu jedem Taktzeit…“)
- Ein Zufallsgenerator gibt zu jedem Taktzeitpunkt (ν) eine binäre Zufallszahl xν ab, die 0 oder 1 sein kann. Der Wert „1” tritt mit Wahrscheinlichkeit p = 0.25 auf; die einzelnen Werte xν seien statistisch voneinander unabhängig.
- Die Binärzahlen werden in ein Schieberegister mit I = 6 Speicherzellen abgelegt. Zu jedem Taktzeitpunkt wird der Inhalt dieses Schieberegisters um eine Stelle nach rechts verschoben und jeweils die algebraische Summe yν der Schieberegisterinhalte gebildet:
- $$y_{\nu}=\sum\limits_{i=0}^{5}x_{\nu-i}=x_{\nu}+x_{\nu-1}+...+x_{\nu-5}.$$
- Hinweis: Diese Aufgabe bezieht sich auf den gesamten Lehrstoff von Kapitel 2.3. Zur Kontrolle Ihrer Ergebnisse können Sie folgendes Berechnungsmodul benutzen:
Fragebogen
Musterlösung
- 1. In jeder Zelle kann eine 0 oder eine 1 stehen; deshalb kann die Summe alle ganzzahligen Werte zwischen 0 und 6 annehmen:
- $$y_{\nu}\in\{0,1,...,6\}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} y_{\rm max} \hspace{0.15cm} \underline{= 6}.$$
- 2. Es liegt eine Binomialverteilung vor. Daher gilt mit p = 0.25:
- $$\rm Pr(\it y =\rm 0)=(\rm 1-\it p)^{\it I}=\rm 0.75^6=0.178,$$
- $$\rm Pr(\it y=\rm 1)=\rm \left({\it I \atop {\rm 1}}\right)\cdot (\rm 1-\it p)^{\it I-\rm 1}\cdot \it p= \rm 6\cdot 0.75^5\cdot 0.25=0.356,$$
- $$\rm Pr(\it y=\rm 2)=\rm \left({\it I \atop {\rm 2}}\right)\cdot (\rm 1-\it p)^{\it I-\rm 2}\cdot \it p^{\rm 2}= \rm 15\cdot 0.75^4\cdot 0.25^2=0.297,$$
- $$\rm Pr(\it y>\rm 2)=\rm 1-Pr(\it y=\rm 0)-\rm Pr(\it y=\rm 1)-\rm Pr(\it y=\rm 2)\hspace{0.15cm} \underline{=\rm 0.169}.$$
- 3. Nach der allgemeinen Gleichung gilt für den Mittelwert der Binomialverteilung:
- $$\it m_y=\it I\cdot p\hspace{0.15cm} \underline{=\rm 1.5}.$$
- 4. Entsprechend gilt für die Streuung der Binomialverteilung:
- $$\it \sigma_y=\sqrt{\it I \cdot p \cdot(\rm 1-\it p)} \hspace{0.15cm} \underline{= \rm 1.061}.$$
- 5. Ist yν = 0, so können zum nächsten Zeitpunkt nur die Werte 0 und 1 folgen, nicht aber 2, ... , 6. Das heißt: Die Folge 〈yν〉 weist (starke) statistische Bindungen auf ⇒ Lösungsvorschlag 2.
- 6. Die gesuchte Wahrscheinlichkeit ist identisch mit der Wahrscheinlichkeit dafür, dass das neue Binärsymbol gleich dem aus dem Schieberegister herausgefallenen Symbol ist. Daraus folgt:
- $$\rm Pr (\it y_{\nu} = \mu\hspace{0.05cm}| \hspace{0.05cm} y_{\nu-{\rm 1}} = \mu) = \rm Pr(\it x_{\nu}= x_{\nu-\rm 6}). $$
- Da die Symbole xν statistisch voneinander unabhängig sind, kann hierfür auch geschrieben werden:
- $$\rm Pr(\it x_{\nu} = x_{\nu-\rm 6}) = \rm Pr\left((x_{\nu}=\rm 1)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-\rm 6}=\rm 1)\hspace{0.05cm}\cup \hspace{0.05cm}(x_\nu=0)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-\rm 6} =\rm 0)\right)\\ = \it p^{\rm 2}+(\rm 1-\it p)^{\rm 2}=\rm 0.25^2 + 0.75^2\hspace{0.15cm} \underline{ = 0.625}. $$