Aufgabe 4.10: Binär und quaternär

Aus LNTwww
Wechseln zu:Navigation, Suche

Binär- und Quaternärsignal

Wir betrachten hier ein Binärsignal $b(t)$ und ein Quarternärsignal $q(t)$, wobei gilt:

  • Die beiden Signale sind rechteckförmig, und die Dauer der einzelnen Rechtecke beträgt jeweils $T$ (Symboldauer).
  • Die durch die Impulshöhen der einzelnen Rechteckimpulse dargestellten Symbole (mit Stufenzahl $M = 2$ bzw. $M = 4$) sind statistisch unabhängig.
  • Wegen der bipolaren Signalkonstellation sind beide Signale gleichsignalfrei, wenn die Symbolwahrscheinlichkeiten geeignet (symmetrisch) gewählt werden.
  • Aufgrund der letztgenannten Eigenschaft folgt für die Wahrscheinlichkeiten der Binärsymbole:
$${\rm Pr}(b(t) = +b_0) = {\rm Pr}(b(t) = -b_0) ={1}/{2}.$$
  • Dagegen gelte für das Quarternärsignal:
$${\rm Pr}(q(t) = +3 \hspace{0.05cm}{\rm V}) = {\rm Pr}(q(t) = -3 \hspace{0.05cm}{\rm V})= {1}/{6},$$
$${\rm Pr}(q(t) = +1 \hspace{0.05cm}{\rm V}) = {\rm Pr}(q(t) = -1 \hspace{0.05cm}{\rm V})= {2}/{6}.$$


Hinweise:

  • Die Aufgabe gehört zum Kapitel Autokorrelationsfunktion.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Berechnen Sie den AKF-Wert $\varphi_q(\tau = 0)$ des Quarternärsignals.

$\varphi_x(\tau = 0) \ =$

$\ \rm V^2$

2

Wie groß ist der AKF-Wert bei $\tau = T$? Begründen Sie, warum die AKF-Werte für $|\tau| > =T$ genauso groß sind. Skizzieren Sie den AKF-Verlauf.

$\varphi_x(\tau = T) \ =$

$\ \rm V^2$

3

Mit welchen Amplitudenwerten $(\pm b_0)$ hat das Binärsignal $b(t)$ genau die gleiche AKF?

$b_0\ =$

$\ \rm V$

4

Welche der folgenden Beschreibungsgrößen eines stochastischen Prozesses lassen sich aus der AKF ermitteln?

Periodendauer.
Wahrscheinlichkeitsdichtefunktion.
Linearer Mittelwert.
Varianz.
Moment 3. Ordnung.
Phasenbeziehungen.


Musterlösung

a)  Der AKF-Wert an der Stelle τ = 0 entspricht der mittleren Signalleistung, also dem quadratischen Mittelwert von q(t). Für diesen gilt:
$$\varphi_q(\tau = \rm 0)= \rm \frac{1}{6 } (\rm 3\,V)^2 + \rm \frac{2}{6 } (\rm 1\,V)^2 + \rm \frac{2}{6 } (\rm -1\,V)^2 + \rm \frac{1}{6 } (\rm -3\,V)^2= \rm \frac{22}{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$
2.  Die einzelnen Symbole wurden als statistisch unabhängig vorausgesetzt. Deshalb und wegen des fehlenden Gleichanteils gilt hier für jeden ganzzahligen Wert von ν:
$$\rm E \left [ \it q(t) \cdot q ( t + \nu T) \right ] = \rm E \left [ \it q(t) \right ] \cdot E \left [ \it q ( t + \nu T) \right ]\hspace{0.15cm}\underline{ = 0}.$$
P ID385 Sto A 4 10 b neu.png
Somit hat die gesuchte AKF den rechts skizzierten Verlauf. Im Bereich -TτT ist die AKF aufgrund der rechteckförmigen Impulsform abschnittsweise linear, also dreieckförmig.
3. Die AKF φb(τ) des Binärsignals ist aufgrund der statistisch unabhängigen Symbole im Bereich |τ| > T ebenfalls identisch 0, und für -TτT ergibt sich ebenfalls eine Dreiecksform.
Für den quadratischen Mittelwert erhält man:
$$\varphi_b (\tau = \rm 0) =\it b_{\rm 0}^{\rm 2}.$$
Mit b0 = 1.915V sind die beiden Autokorrelationsfunktionen φq(τ) und φb(τ) identisch.
4. Aus der Autokorrelationsfunktion lassen sich ermitteln:
  • die Periodendauer T0 (diese ist für die Mustersignale und die AKF gleich),
  • der lineare Mittelwert (Wurzel aus dem Endwert der AKF für τ → ∞), und
  • die Varianz (Differenz der AKF-Werte von τ = 0 und τ → ∞).
Nicht ermittelt werden können:
  • die Wahrscheinlichkeitsdichtefunktion (siehe Punkt b und c),
  • die Momente höherer Ordnung (für deren Berechnung benötigt man die WDF), sowie
  • alle Phasenbeziehungen und Symmetrieeigenschaften.
Richtig sind also die Lösungsvorschläge 1, 3 und 4.