Aufgabe 2.8: Huffman-Anwendung bei einer Markovquelle
Wir betrachten hier die binäre symmetrische Markovquelle entsprechend nebenstehender Grafik, die durch den einzigen Parameter
- $$q = {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y})$$
vollständig beschrieben wird. Die angegebenen Quellensymbolfolgen gelten für die bedingten Wahrscheinlichkeiten $q = 0.2$ bzw. $q = 0.8$. In der Teilaufgabe (1) ist zu klären, welche Symbolfolge – die rote oder die blaue – mit $q = 0.2$ und welche mit $q = 0.8$ generiert wurde.
Die Eigenschaften von Markovquellen werden im Kapitel Nachrichtenquellen mit Gedächtnis ausführlich beschrieben. Aufgrund der hier vorausgesetzten Symmetrie bezüglich der Binärsymbole X und Y ergeben sich einige gravierende Vereinfachungen, wie in der Zusatzaufgabe 1.5Z hergeleitet wird:
- Die Symbole X und Y sind gleichwahrscheinlich, das heißt, es ist $p_{\rm X} = p_{\rm Y} = 0.5$. Damit lautet die erste Entropienäherung: $H_1 = 1\,\,{\rm bit/Quellensymbol}\hspace{0.05cm}. $
- Die Entropie der Markovquelle ergibt sich sowohl für $q = 0.2$ als auch für $q = 0.8$ zu
- $$H = q \cdot {\rm log_2}\hspace{0.15cm}\frac{1}{q} + (1-q) \cdot {\rm llog_2}\hspace{0.15cm}\frac{1}{1-q} = 0.722\,\,{\rm bit/Quellensymbol}\hspace{0.05cm}.$$
- Bei Markovquellen sind alle Entropienäherungen mit Ordnung $k \ge 2$ durch $H_1$ und $H = H_{k \to \infty}$ bestimmt. Die folgenden Zahlenwerte gelten wieder für $q = 0.2$ und $q = 0.8$ gleichermaßen:
- $$H_2 = {1}/{2}\cdot \big [ H_1 + H \big ] = 0.861\,\,{\rm bit/Quellensymbol}\hspace{0.05cm},$$
- $$H_3 = {1}/{3} \cdot \big [ H_1 + 2H \big ] = 0.815\,\,{\rm bit/Quellensymbol}\hspace{0.05cm}.$$
In dieser Aufgabe soll der Huffman–Algorithmus auf $k$–Tupel angewandt werden, wobei wir uns auf $k = 2$ und $k = 3$ beschränken.
Hinweise:
- Die Aufgabe gehört zum Kapitel Entropiecodierung nach Huffman.
- Insbesondere wird auf die Seite Anwendung der Huffman-Codierung auf k-Tupel Bezug genommen.
- Nützliche Informationen finden Sie auch in den Angabenblättern zu Aufgabe 2.7 und Zusatzaufgabe 2.7Z.
- Zur Kontrolle Ihrer Ergebnisse verweisen wir auf das Interaktionsmodul Shannon–Fano– und Huffman–Codierung.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$q = {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.8$$
erzeugt und die rote Symbolfolge 1 mit q = 0.2 ⇒ Richtig ist der Lösungsvorschlag 2.
2. Da hier die Quellensymbole X und Y gleichwahrscheinlich angenommen wurden, macht die direkte Anwendung von Huffman keinen Sinn. Dagegen kann man die inneren statistischen Bindungen der Markovquelle zur Datenkomprimierung nutzen, wenn man k–Tupel bildet (k ≥ 2). Richtig sind demnach die Antworten 2 und 3. Je größer k ist, desto mehr nähert sich die Codewortlänge LM der Entropie H.
3. Die Symbolwahrscheinlichkeiten pX und pY sind jeweils 0.5. Damit erhält man für die Zweiertupel:
- $$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XX}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot q = 0.5 \cdot 0.8 \hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm},\\ p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XY}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot (1-q)= 0.5 \cdot 0.2 \hspace{0.15cm}\underline{ = 0.1} \hspace{0.05cm},\\ p_{\rm C} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm YX}) = p_{\rm Y} \cdot {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.5 \cdot (1-q)= 0.5 \cdot 0.2 \hspace{0.15cm}\underline{ = 0.1} \hspace{0.05cm},\\ p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm YY}) = p_{\rm Y} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.5 \cdot q = 0.5 \cdot 0.8\hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm}.$$
4. Nebenstehender Bildschirmabzug des Programms Shannon–Fano– und Huffman–Codierung zeigt die Konstruktion des Huffman–Codes für k = 2 mit den soeben berechneten Wahrscheinlichkeiten. Damit gilt für die mittlere Codewortlänge:
- $$L_{\rm M}' \hspace{0.2cm} = \hspace{0.2cm} 0.4 \cdot 1 + 0.4 \cdot 2 + (0.1 + 0.1) \cdot 3 = \\ \hspace{0.2cm} = 1.8\,\,{\rm bit/Zweiertupel}$$
- $$\Rightarrow\hspace{0.3cm}L_{\rm M} = \frac{L_{\rm M}'}{2}\hspace{0.15cm}\underline{ = 0.9\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$
5. Nach dem Quellencodierungstheorem gilt LM ≥ H. Wendet man aber Huffman–Codierung an und lässt dabei Bindungen zwischen nicht benachbarten Symbolen außer Betracht (k = 2), so gilt als unterste Grenze der Codewortlänge nicht H = 0.722, sondern H2 = 0.861 (auf den Zusatz bit/Quellensymbol wird für den Rest der Aufgabe verzichtet) ⇒ Lösungsvorschlag 2.
Das Ergebnis der Teilaufgabe 4) war LM = 0.9. Würde eine unsymmetrische Markovkette vorliegen und zwar derart, dass sich für die Wahrscheinlichkeiten pA, ... , pD die Werte 50%, 25% und zweimal 12.5% ergeben würden, so käme man auf die mittlere Codewortlänge LM = 0.875. Wie die genauen Parameter dieser unsymmetrischen Markovquelle aussehen, weiß ich (G. Söder) nicht. Auch nicht, wie sich der Wert 0.875 auf 0.861 senken ließe. Der Huffman–Algorithmus ist hierfür jedenfalls ungeeignet.
6. Mit q = 0.8 und 1 – q = 0.2 erhält man:
- $$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXX}) = 0.5 \cdot q^2 \hspace{0.15cm}\underline{ = 0.32} = p_{\rm H} = {\rm Pr}(\boldsymbol{\rm YYY})\hspace{0.05cm},\\ p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXY}) = 0.5 \cdot q \cdot (1-q) \hspace{0.15cm}\underline{ = 0.08}= p_{\rm G} = {\rm Pr}(\boldsymbol{\rm YYX}) \hspace{0.05cm},\\ p_{\rm C} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XYX}) = 0.5 \cdot (1-q)^2\hspace{0.15cm}\underline{ = 0.02} = p_{\rm F}= {\rm Pr}(\boldsymbol{\rm YXY}) \hspace{0.05cm},\\ p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XYY}) = 0.5 \cdot (1-q) \cdot q \hspace{0.15cm}\underline{ = 0.08} = p_{\rm E} = {\rm Pr}(\boldsymbol{\rm YXX})\hspace{0.05cm}.$$
7. Der Bildschirmabzug des Flash–Moduls verdeutlicht die Konstellation des Huffman–Codes für k = 3. Damit erhält man für die mittlere Codewortlänge:
- $$L_{\rm M}' = 0.64 \cdot 2 + 0.24 \cdot 3 + 0.04 \cdot 5 = 2.52\,\,{\rm bit/Dreiertupel}$$
- $$\Rightarrow\hspace{0.3cm}L_{\rm M} = {L_{\rm M}'}/{3}\hspace{0.15cm}\underline{ = 0.84\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$
Man erkennt die Verbesserung gegenüber (4). Die für k = 2 gültige informationstheoretische Schranke H2 = 0.861 wird nun unterschritten (LM). Die neue Schranke für k = 3 ist H3 = 0.815. Um die Quellenentropie H = 0.722 zu erreichen (besser gesagt: diesem Endwert bis auf ein ε näher zu kommen), müsste man allerdings unendlich lange Tupel bilden (k → ∞).