Aufgabe 3.2: Spektrum bei Winkelmodulation
Es wird hier von folgenden Gleichungen ausgegangen:
- Quellensignal:
$$q(t) = 2\,{\rm V} \cdot \sin(2 \pi \cdot 3\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
- Sendesignal:
$$s(t) = 1\,{\rm V} \cdot \cos(2 \pi \cdot 100\,{\rm kHz} \cdot t + K \cdot q(t))\hspace{0.05cm},$$
- idealer Kanal, d.h. das Empfangssignal:
$$r(t) = s(t) = 1\,{\rm V} \cdot \cos(2 \pi \cdot 100\,{\rm kHz} \cdot t + \phi(t))\hspace{0.05cm},$$
- idealer Demodulator;
$$ v(t) = \frac{1}{ K} \cdot \phi(t)\hspace{0.05cm}.$$ Die Grafik zeigt die Besselfunktionen erster Art und n-ter Ordnung in tabellarischer Form.
Hinweis: Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 3.1.
Fragebogen
Musterlösung
2. Eine Winkelmodulation (PM, FM) führt bei bandbegrenztem Kanal zu nichtlinearen Verzerrungen. Bei AM ist dagegen bereits mit $B_K = 6 kHz$ eine verzerrungsfreie Übertragung möglich ⇒ Antwort 1.
3. Der Modulationsindex (oder Phasenhub) ist bei PM gleich $η = K · A_N$. Somit ist $K = 1/A_N = 0.5 \frac{1}{V}$ zu wählen, damit sich $η = 1$ ergibt.
4. Es liegt ein sogenanntes Besselspektrum vor:
$$ S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.$$
Dieses ist ein diskretes Spektrum mit Anteilen bei $f = n · f_N$, wobei n ganzzahlig ist. Die Gewichte der Diracfunktionen sind durch die Besselfunktionen gegeben. Mit $A_T = 1 V$ erhält man:
$$ S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},$$ $$ S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},$$ $$ S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.$$ Aufgrund der Symmetrieeigenschaft $${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)$$ erhält man für die Spektrallinie bei $f = –3 kHz$: $$S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.$$ Anmerkung: Eigentlich müsste man für den Spektralwert bei f = 0 schreiben: $$S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.$$ Dieser ist somit aufgrund der Diracfunktion unendlich groß, lediglich das Gewicht der Diracfunktion ist endlich. Gleiches gilt für alle diskreten Spektrallinien.
5.$S_+(f)$ ergibt sich aus $S_{TP}(f)$ durch Verschiebung um $f_T$ nach rechts. Deshalb ist
$$S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.$$
Das tatsächliche Spektrum unterscheidet sich von $S_+(f)$ bei positiven Frequenzen um den Faktor 1/2:
$$S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.$$
Allgemein kann geschrieben werden:
$$ S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.$$
6. Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien $J_{|n|>3}$ außer Acht gelassen werden. Damit erhält man $B_K = 2 · 3 · f_N = 18 kHz$.
7. Die Zahlenwerte in der Tabelle auf der Angabenseite zeigen, dass nun $B_K = 24 kHz$ (für $η = 2$) bzw. $B_K = 36 kHz$ (für $η = 3$) erforderlich wären.