Aufgabe 1.1Z: Redundanzfreie Binärquelle
Aus LNTwww
Version vom 19. Oktober 2017, 22:07 Uhr von Mohamed (Diskussion | Beiträge)
Eine jede digitale Quelle kann durch ihre Quellensymbolfolge $$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle$$ vollständig beschrieben werden, wobei hier entgegen dem Theorieteil die Laufvariable $\nu$ mit 0 beginnt. Entstammt jedes einzelne Symbol $q_\nu$ dem Symbolvorrat {L, H}, so spricht man von einer Binärquelle.
Unter Verwendung des Symbolabstandes $T$ kann man die Quellensymbolfolge $\langle q_\nu \rangle$ in äquivalenter Weise auch durch das diracförmige Quellensignal $$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)$$
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)
(6)