Aufgabe 1.3Z: Schwellenwertoptimierung

Aus LNTwww
Wechseln zu:Navigation, Suche


P ID1268 Dig Z 1 3.png

In dieser Aufgabe wird ein bipolares Binärsystem mit AWGN–Rauschen („Additive White Gaussian Noise”) betrachtet, so dass für die Bitfehlerwahrscheinlichkeit $$p_{\rm B} = {\rm Q} \left( \frac{s_0}{\sigma_d}\right)= \frac[[:Vorlage:1]]{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2} \cdot \sigma_d}\right) \hspace{0.05cm}$$ gilt. Hierbei sind folgende Funktionen verwendet: $$\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm},$$ $${\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)