Aufgabe 4.14: 8-PSK und 16-PSK

Aus LNTwww
Version vom 9. November 2017, 10:10 Uhr von Hussain (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit kohärenter Demodulation}} Datei:P_ID2067__Dig_A_4_14.png|right|frame|Signalra…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Signalraumkonstellation der 8–PSK und 16–PSK

Betrachtet wird nun eine Signale $s_i(t)$, die auf den Zeitbereich $0 ≤ t ≤ T$ begrenzt ist. Der Index $i$ durchläuft die Werte $0, \ ... \ , M–1$:

$$s_i(t) = A \cdot \cos \left ( 2\pi f_{\rm T}t + { 2\pi }/{ M} \cdot i \right ) \hspace{0.05cm}.$$

Es handelt sich hierbei um eine Phasenmodulation mit $M$ Signalformen. Man nennt dieses Modulationsverfahren auch M–PSK. $M$ ist meist eine Zweierpotenz.

Die Grafik zeigt die Signalraumkonstellation für $M = 8$ (oben) und $M = 16$ (unten). Alle Signalraumpunkte haben gleiche Energie $||\boldsymbol{s}_i||^2 = E_{\rm S}$ („mittlere Symbolenergie”).

Die exakte Berechnung der Fehlerwahrscheinlichkeit ist für $M ≠ 2$ schwierig. Angegeben werden kann dagegen stets die sogenannte Union Bound als obere Schranke für die Symbolfehlerwahrscheinlichkeit ($p_{\rm UB} ≥ p_{\rm S}$):

$$ p_{\rm UB} = 2 \cdot {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right ) = 2 \cdot {\rm Q} \left (\sqrt{ \frac{ d^2}{ 2 N_0}}\right ) \hspace{0.05cm}.$$

Hierbei bezeichnen:

  • $d$ ist der Abstand zwischen zwei benachbarten Punkten, zum Beispiel zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$. Verläuft die Entscheidungsgrenze senkrecht zur Verbindungslinie von $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ genau mittig, so ist $d/2$ der Abstand von $\boldsymbol{s}_0$ bzw. $\boldsymbol{s}_1$ von dieser Entscheidungsgrenze.
  • Die Varianz des AWGN–Rauschens ist $\sigma_n^2 = N_0/2$.
  • Der Faktor $2$ in obiger Grenze berücksichtigt, dass für $M > 2$ jeder Signalraumpunkt in zwei Richtungen verfälscht werden kann, zum Beispiel bei der 8–PSK das Symbol $\boldsymbol{s}_0$ in das Symbol $\boldsymbol{s}_1$ oder in das Symbol $\boldsymbol{s}_7$.
  • ${\rm Q}(x)$ ist die komplementäre Gaußsche Fehlerfunktion, für die folgende Näherung gilt:
$${\rm Q}(x) \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$

In der letzten Teilaufgabe geht es um die Bitfehlerwahrscheinlichkeit. Für diese wurde im Theorieteil unter der Voraussetzung eines Graycodes folgende Schranke angegeben:

$$p_{\rm B} \le \frac{2}{{\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{{\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) \hspace{0.05cm}.$$

Diese Gleichung ist allerdings nur für $M > 4$ anzuwenden. Dagegen ergibt sich

  • für $M = 2$ aus der Identität mit der BPSK, und
  • für $M = 4$ aus der Tatsache, dass die 4–PSK mit der 4–QAM identisch ist,


die exakte Lösung

$$p_{\rm B} ={\rm Q} \left ( \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) \hspace{0.05cm}.$$

Hinweise:

$$\cos(\alpha + \beta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(\alpha ) \cdot \cos( \beta) - \sin(\alpha ) \cdot \sin( \beta)\hspace{0.05cm}, \hspace{0.25cm} 1 - \cos(2\alpha ) = \sin^2(\alpha )\hspace{0.05cm},$$
$$ \int_{0}^{T} \cos^2 ( 2\pi f_{\rm T}t) \,{\rm d} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5\hspace{0.05cm},\hspace{0.15cm}{\rm falls}\hspace{0.15cm} f_{\rm T} >> 1/T \hspace{0.05cm}.$$
  • Die Zuordnung der 8 bzw. 16 Symbole zu Binärfolgen der Länge 3 bzw. 4 nach der Graycodierung kann der Grafik entnommen werden (rote Beschriftung).



Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz$ =

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)