Aufgabe 3.1Z: Faltungscodes der Rate 1/2

Aus LNTwww
Wechseln zu:Navigation, Suche

Zwei Faltungscodes der Rate 1/2

Die Grafik zeigt zwei Faltungscodierer der Rate $R = 1/2$. Am Eingang liegt die Informationssequenz $\underline {u} = (u_1, u_2, \ ... \ , u_i, \ ...$) an. Hieraus werden durch Modulo–2–Operationen die beiden Sequenzen

$$\underline{\it x}^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm},\hspace{0.05cm} x_i^{(1)} \hspace{0.05cm}, ... \hspace{0.05cm} \big )\hspace{0.05cm},$$
$$\underline{\it x}^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big( \hspace{0.05cm}x_1^{(2)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm},\hspace{0.05cm} x_i^{(2)} \hspace{0.05cm}, ... \hspace{0.05cm} \big )$$

erzeugt, wobei $x_i^{(j)}$ mit $j = 1$ bzw. $j = 2$ außer von $u_i$ auch von den vorherigen Informationsbits $u_{i–1}, \ ... \ , u_{i \, –m}$ abhängen kann. Man bezeichnet $m$ als das Gedächtnis und $\nu = m + 1$ als die Einflusslänge des Codes bzw. des Codierers. Die betrachteten Coder A und B unterscheiden sich hinsichtlich dieser Größen.

In der Grafik nicht dargestellt ist das Multiplexen der beiden Teilsequenzen $\underline {x}^{(1)}$ und $\underline {x}^{(2)}$ zur resultierenden Codesequenz $\underline {x} = (x_1^{(1)}, x_1^{(2)}, x_2^{(1)}, x_2^{(2)}, \ ...)$.

In den Teilaufgaben (3) bis (5) sollen Sie den jeweiligen Beginn der Sequenzen $\underline {x}^{(1)}, \underline{x}^{(2)}$ und $\underline{x}$ ermitteln, wobei von der Informationssequenz $\underline{u} = (1, 0, 1, 1, 0, 0, \ ...)$ auszugehen ist.

Hinweise:

  • Die Aufgabe bezieht sich auf das Themengebiet des Kapitels Grundlagen der Faltungscodierung.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.$$


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)