Aufgabe 4.2: Rechteckförmige Spektren
Wir betrachten zwei Signale $u(t)$ und $w(t)$ mit jeweils rechteckförmigen Spektren $U(f)$ bzw. $W(f)$.
- Es ist offensichtlich, dass
- $$u(t) = u_0 \cdot {\rm si} ( \pi \cdot {t}/{T_{ u}})$$
- ein TP–Signal ist, dessen zwei Parameter $u_0$ und $T_u$ in der Teilaufgabe (1) zu bestimmen sind.
- Dagegen zeigt das Spektrum $W(f)$, dass $w(t)$ ein BP–Signal beschreibt.
In dieser Aufgabe wird außerdem auf das BP–Signal
$$d(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 \hspace{0.05cm}t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2\hspace{0.05cm} t)$$
Bezug genommen, dessen Spektrum in Aufgabe A4.1 ermittelt wurde. Es sei $f_2$ = 2 kHz.
Hinweise:
- Die Aufgabe gehört zum Kapitel [[Unterschiede_und_Gemeinsamkeiten_von_TP-_und_BP-Signalen|Signaldarstellung/Unterschiede und Gemeinsamkeiten von TP- und BP-Signalen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Berücksichtigen Sie bei der Lösung die folgende trigonometrische Beziehung:
- $$\sin (\alpha) \cdot \cos (\beta) = {1}{2} \cdot \left[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\right].$$
Fragebogen
Musterlösung
1. Die Zeit $T_u$, welche die erste Nullstelle des TP-Signals $u(t)$ angibt, ist gleich dem Kehrwert der Breite des Rechteckspektrums, also $1/(2\, \text{kHz} ) = 0.5 \, \text{ms}$. Die Impulsamplitude ist, wie in der Musterlösung zur Aufgabe 4.1 ausführlich dargelegt wurde, gleich der Rechteckfläche. Daraus folgt $u_0= 2 \, \text{V}$.
2. Das BP-Spektrum kann mit $f_{\rm T} = 4\, \text{kHz}$ wie folgt dargestellt werden:
$$ W(f) = U(f- f_{\rm T}) + U(f+ f_{\rm T}) = U(f)\star \left[ \delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].$$
Entsprechend dem Verschiebungssatz gilt dann für das dazugehörige Zeitsignal:
$$w(t) = 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = 2 u_0 \cdot {\rm si} ( \pi \frac{t}{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t). $$
Die Grafik zeigt
- oben das TP-Signal $u(t)$,
- dann die Schwingung $c(t) = 2 · \cos(2 \pi fTt$ ),
- unten das BP-Signal $w(t) = u(t) \cdot c(t)$.
Insbesondere erhält man zum Zeitpunkt $t = 0$:
$$w(t = 0) = 2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$
Der Zeitpunkt $t=62.5 \,\mu \text{s}$ entspricht genau einer viertel Periodendauer des Signals $c(t)$:
$$ w(t = 62.5 \hspace{0.05cm}{\rm \mu s}) = 2 u_0 \cdot{\rm si} ( \pi \frac{62.5 \hspace{0.05cm}{\rm \mu s}} {500 \hspace{0.05cm}{\rm \mu s}}) \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot 62.5 \hspace{0.05cm}{\rm \mu s}) = 4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.$$
3. Vergleicht man die Spektralfunktion $W(f)$ dieser Aufgabe mit dem Spektrum $D(f)$ in der Musterlösung zu Aufgabe 4.1 , so erkennt man, dass $w(t)$ und $d(t)$ identische Signale sind. Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit $f_2 = 2 \,\text{kHz}$ kann für das hier betrachtete Signal geschrieben werden:
$$w(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi f_2 t) \cdot {\cos} ( 4 \pi f_2 t) = ({4\hspace{0.05cm}{\rm V}})/({\pi f_2 t})\cdot \sin (\pi f_2 t) \cdot \cos ( 4 \pi f_2 t) .$$
Wegen der trigonometrischen Beziehung
$$\sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \left[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\right]$$
kann obige Gleichung umgeformt werden:
$$w(t ) = \frac{2\hspace{0.05cm}{\rm V}}{\pi f_2 t}\cdot \left[\sin (5\pi f_2 t) + \sin (-3\pi f_2 t)\right] = 10\hspace{0.05cm}{\rm V} \cdot \frac{\sin (5\pi f_2 t)}{5\pi f_2 t}- 6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.$$
Damit ist gezeigt, dass beide Signale tatsächlich identisch sind ⇒ Lösungsvorschlag 1:
$$w(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2 t) = d(t).$$