Algebraische und polynomische Beschreibung

Aus LNTwww
Wechseln zu:Navigation, Suche

Aufteilung der Generatormatrix in Teilmatrizen


Entsprechend den Ausführungen im früheren Abschnitt Lineare Codes und zyklische Codes lässt sich das Codewort $\underline{x}$ eines linearen Blockcodes aus dem Informationswort $\underline{u}$ und der Generatormatrix $\mathbf{G}$ in einfacher Weise ermitteln:   $\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}}$. Dabei gilt:

  • Die Vektoren $\underline{u}$ und $\underline{x}$ haben die Länge $k$ (Bitanzahl eines Informationswortes) bzw. $n$ (Bitanzahl eines Codewortes) und $\mathbf{G}$ besitzt die Dimension $k × n$ ($k$ Zeilen und $n$ Spalten).
  • Bei Faltungscodierung bezeichnen dagegen $\underline{u}$ und $\underline{x}$ Sequenzen mit $k\hspace{0.05cm}' → ∞$ und $n\hspace{0.05cm}' → ∞$. Deshalb wird auch die Generatormatrix $\mathbf{G}$ in beiden Richtungen unendlich weit ausgedehnt sein.

Als Vorbereitung für die Einführung der Generatormatrix $\mathbf{G}$ auf der nächsten Seite definieren wir $m + 1$ Teilmatrizen, jeweils mit $k$ Zeilen und $n$ Spalten, die wir mit $\mathbf{G}_l$ bezeichnen, wobei $0 ≤ l ≤ m$ gilt.

$\text{Definition:}$  Die Teilmatrix $\mathbf{G}_l$ beschreibt folgenden Sachverhalt: Ist das Matrixelement $\mathbf{G}_l(\kappa, j) = 1$, so sagt dies aus, dass das Codebit $x_i^{(j)}$ durch das Informationsbit $u_{i-l}^{(\kappa)}$ beeinflusst wird. Andernfalls ist dieses Matrixelement gleich $0$.


Diese Definition wird nun an einem Beispiel verdeutlicht.

Faltungscoder mit $k = 2, \ n = 3, \ m = 1$

$\text{Beispiel 1:}$  Wir betrachten wiederum den Faltungscodierer gemäß nebenstehender Grafik mit den folgenden Codebits:

\[x_i^{(1)} = u_{i}^{(1)} + u_{i-1}^{(1)}+ u_{i-1}^{(2)} \hspace{0.05cm},\]
\[x_i^{(2)} = u_{i}^{(2)} + u_{i-1}^{(1)} \hspace{0.05cm},\]
\[x_i^{(3)} = u_{i}^{(1)} + u_{i}^{(2)}+ u_{i-1}^{(1)} \hspace{0.05cm}.\]

Wegen der Gedächtnisordnung $m = 1$ wird dieser Codierer durch die beiden Teilmatrizen $\mathbf{G}_0$ und $\mathbf{G}_1$ vollständig charakterisiert:

\[{ \boldsymbol{\rm G} }_0 = \begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.5cm} { \boldsymbol{\rm G} }_1 = \begin{pmatrix} 1 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix}\hspace{0.05cm}.\]

Diese Matrizen sind wie folgt zu interpretieren:

  • Erste Zeile von $\mathbf{G}_0$, rote Pfeile:  $\hspace{1.1cm}u_i^{(1)}$ beeinflusst sowohl $x_i^{(1)}$ als auch $x_i^{(3)}$, nicht jedoch $x_i^{(2)}$.
  • Zweite Zeile von $\mathbf{G}_0$, blaue Pfeile:  $\hspace{0.6cm}u_i^{(2)}$ beeinflusst $x_i^{(2)}$ und $x_i^{(3)}$, aber nicht $x_i^{(1)}$.
  • Erste Zeile von $\mathbf{G}_1$, grüne Pfeile:  $\hspace{0.9cm}u_{i-1}^{(1)}$ beeinflusst alle drei Coderausgänge.
  • Zweite Zeile von $\mathbf{G}_1$, brauner Pfeil:  $\hspace{0.45cm}u_{i-1}^{(2)}$ beeinflusst nur $x_i^{(1)}$.


Generatormatrix eines Faltungscodierers mit Gedächtnis m


Mit den Teilmatrizen $\mathbf{G}_0, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \mathbf{G}_m$ lassen sich die $n$ Codebits zum Zeitpunkt $i$ wie folgt ausdrücken:

\[\underline{x}_i = \sum_{l = 0}^{m} \hspace{0.15cm}\underline{u}_{i-l} \cdot { \boldsymbol{\rm G}}_l = \underline{u}_{i} \cdot { \boldsymbol{\rm G}}_0 + \underline{u}_{i-1} \cdot { \boldsymbol{\rm G}}_1 +\hspace{0.05cm} \text{...} \hspace{0.05cm} + \underline{u}_{i-m} \cdot { \boldsymbol{\rm G}}_m \hspace{0.05cm}.\]

Hierbei sind folgende vektorielle Größen zu berücksichtigen:

\[\underline{\it u}_i = \left ( u_i^{(1)}, u_i^{(2)}, \hspace{0.05cm}\text{...} \hspace{0.1cm}, u_i^{(k)}\right )\hspace{0.05cm},\hspace{0.5cm} \underline{\it x}_i = \left ( x_i^{(1)}, x_i^{(2)}, \hspace{0.05cm}\text{...} \hspace{0.1cm}, x_i^{(n)}\right )\hspace{0.05cm}.\]

Betrachtet man die bei $i = 1$ beginnenden und sich zeitlich bis ins Unendliche erstreckenden Sequenzen

\[\underline{\it u} = \big( \underline{\it u}_1\hspace{0.05cm}, \underline{\it u}_2\hspace{0.05cm}, \hspace{0.05cm}\text{...} \hspace{0.1cm}, \underline{\it u}_i\hspace{0.05cm}, \hspace{0.05cm}\text{...} \hspace{0.1cm} \big)\hspace{0.05cm},\hspace{0.5cm} \underline{\it x} = \big( \underline{\it x}_1\hspace{0.05cm}, \underline{\it x}_2\hspace{0.05cm}, \hspace{0.05cm}\text{...} \hspace{0.1cm}, \underline{\it x}_i\hspace{0.05cm}, \hspace{0.05cm}... \hspace{0.1cm} \big)\hspace{0.05cm},\]

so kann dieser Zusammenhang durch die Matrixgleichung $\underline{x} = \underline{u} \cdot \mathbf{G}$ ausgedrückt werden. Hierbei ist für die Generatormatrix $\mathbf{G}$ zu setzen:

\[{ \boldsymbol{\rm G}}=\begin{pmatrix} { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & & & \\ & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & &\\ & & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m &\\ & & & \cdots & \cdots & & & \cdots \end{pmatrix}\hspace{0.05cm}.\]
  • Aus der Gleichung erkennt man sofort das Gedächtnis $m$ des Faltungscodes. Die Parameter $k$ und $n$ sind direkt nicht ablesbar.
  • Sie sind aber durch die Zeilen– und Spaltenanzahl der Teilmatrizen $\mathbf{G}_l$ festgelegt.


Generatormatrix eines Faltungscodes

$\text{Beispiel 2:}$  Mit den zwei Matrizen $\mathbf{G}_0$ und $\mathbf{G}_1$ – siehe Beispiel 1 – erhält man die rechts skizzierte Matrix $\mathbf{G}$.

Anzumerken ist:

  • Die Generatormatrix $\mathbf{G}$ erstreckt sich nach unten und nach rechts eigentlich bis ins Unendliche. Explizit dargestellt sind aber nur acht Zeilen und zwölf Spalten.
  • Für die zeitlich begrenzte Informationssequenz $\underline{u} = (0, 1, 1, 0, 0, 0, 1, 1)$ ist der gezeichnete Matrixteil ausreichend. Die Codesequenz lautet dann:
$$\underline{x} = (0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0).$$
  • Anhand der Beschriftungsfarben lassen sich die $n = 3$ Codewortstränge ablesen.
  • Das gleiche Ergebnis haben wir (auf anderem Wege) im Beispiel 4 am Ende des letzten Kapitels erhalten:
$$\underline{\it x}^{(1)} = (0\hspace{0.05cm}, 0\hspace{0.05cm}, 1\hspace{0.05cm}, 1) \hspace{0.05cm},\hspace{0.5cm} \underline{\it x}^{(2)} = (1\hspace{0.05cm}, 0\hspace{0.05cm},1\hspace{0.05cm}, 1) \hspace{0.05cm},\hspace{0.5cm} \underline{\it x}^{(3)} = (1\hspace{0.05cm}, 1\hspace{0.05cm}, 1\hspace{0.05cm}, 0) \hspace{0.05cm}.$$


Generatormatrix für Faltungscodierer der Rate 1/n


Wir betrachten nun den Sonderfall $k = 1$,

  • zum einen aus Gründen einer möglichst einfachen Darstellung,
  • aber auch, weil Faltungscodierer der Rate $1/n$ für die Praxis eine große Bedeutung besitzen.

Faltungscoder mit $k = 1, n = 2, m = 1$

Faltungscodierer mit $k = 1, n = 2, m = 1$

Aus der nebenstehenden Skizze kann abgeleitet werden:

\[{ \boldsymbol{\rm G}}_0=\begin{pmatrix} 1 & 1 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm G}}_1=\begin{pmatrix} 0 & 1 \end{pmatrix}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} { \boldsymbol{\rm G}}=\begin{pmatrix} 11 & 01 & 00 & 00 & 00 & \cdots & \\ 00 & 11 & 01 & 00 & 00 & \cdots & \\ 00 & 00 & 11 & 01 & 00 & \cdots & \\ 00 & 00 & 00 & 11 & 01 & \cdots & \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}\hspace{0.05cm}.\]

Für die Eingangssequenz $\underline{u} = (1, 0, 1, 1)$ beginnt die Codesequenz mit $\underline{x} = (1, 1, 0, 1, 1, 1, 1, 0, \ \text{...})$. Dieses Ergebnis ist gleich der Summe der Zeilen 1, 3 und 4 der Generatormatrix.

Faltungscoder mit $k = 1, n = 2, m = 2$

Faltungscodierer mit $k = 1, n = 2, m = 2$

Aufgrund der Gedächtnisordnung $m = 2$ gibt es hier drei Teilmatrizen:

\[{ \boldsymbol{\rm G}}_0=\begin{pmatrix} 1 & 1 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm G}}_1=\begin{pmatrix} 1 & 0 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm G}}_2=\begin{pmatrix} 1 & 1 \end{pmatrix}\]

Damit lautet die resultierende Generatormatrix:

\[ { \boldsymbol{\rm G}}=\begin{pmatrix} 11 & 10 & 11 & 00 & 00 & 00 & \cdots & \\ 00 & 11 & 10 & 11 & 00 & 00 & \cdots & \\ 00 & 00 & 11 & 10 & 11 & 00 & \cdots & \\ 00 & 00 & 00 & 11 & 10 & 11 & \cdots & \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}\hspace{0.05cm}.\]

Hier führt die Eingangsssequenz $\underline{u} = (1, 0, 1, 1)$ zur Codesequenz $\underline{x} = (1, 1, 1, 0, 0, 0, 0, 1, \ \text{...})$.

Faltungscoder mit $k = 1, \ n = 3, m = 3$

Faltungscodierer mit $k = 1, n = 3, m = 3$

Wegen $m = 3$ gibt es nun vier Teilmatrizen der jeweiligen Dimension $1 × 3$:

\[{ \boldsymbol{\rm G}}_0=\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm G}}_1=\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm G}}_2=\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm G}}_3=\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}\hspace{0.05cm}.\]

Damit lautet die resultierende Generatormatrix:

\[{ \boldsymbol{\rm G}}=\begin{pmatrix} 110 & 001 & 001 & 011 & 000 & 000 & 000 & \cdots & \\ 000 & 110 & 001 & 001 & 011 & 000 & 000 & \cdots & \\ 000 & 000 & 110 & 001 & 001 & 011 & 000 & \cdots & \\ 000 & 000 & 000 & 110 & 001 & 001 & 011 & \cdots & \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}\hspace{0.05cm},\]

und man erhält für $\underline{u} = (1, 0, 1, 1)$ die Codesequenz $\underline{x} = (1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, \ \text{...})$.

GF(2)–Beschreibungsformen eines Digitalen Filters


Digitales Filter in ${\rm GF}(2)$ der Ordnung $m$

Im Kapitel Grundlagen der Faltungscodierung wurde bereits darauf hingewiesen,

  • dass ein Faltungscodierer der Rate $1/n$ durch mehrere Digitale Filter realisiert werden kann,
  • wobei die Filter parallel mit der gleichen Eingangsfolge $\underline{u}$ arbeiten.


Bevor wir diese Aussage vertiefen, sollen zuerst die Eigenschaften eines Digitalfilters für das Galoisfeld ${\rm GF(2)}$ genannt werden.


Die Grafik ist wie folgt zu interpretieren:

  • Das Filter besitzt die Impulsantwort $\underline{g} = (g_0, g_1, g_2, \ \text{...} \ , g_m)$.
  • Für alle Filterkoeffizienten (mit den Indizes $0 ≤ l ≤ m$) gilt:   $g_l ∈ {\rm GF}(2) = \{0, 1\}$.
  • Die einzelnen Symbole $u_i$ der Eingangsfolge $\underline{u}$ seien ebenfalls binär:   $u_i ∈ \{0, 1\}$.
  • Damit gilt für das Ausgangssymbol zu den Zeitpunkten $i ≥ 1$ mit Addition und Multiplikation in ${\rm GF(2)}$:
\[x_i = \sum_{l = 0}^{m} g_l \cdot u_{i-l} \hspace{0.05cm}.\]
  • Dies entspricht der (zeitdiskreten) Faltungsoperation (englisch: Convolution), gekennzeichnet durch einen Stern. Damit kann für die gesamte Ausgangssequenz geschrieben werden:
\[\underline{x} = \underline{u} * \underline{g}\hspace{0.05cm}.\]
  • Wesentlicher Unterschied gegenüber dem Kapitel Digitale Filter im Buch „Stochastische Signaltheorie” ist die Modulo–2–Addition $(1 + 1 = 0)$ anstelle der herkömmlichen Addition $(1 + 1 = 2)$.

Digitales Filter mit Impulsantwort $(1, 0, 1, 1)$

$\text{Beispiel 3:}$  Die Impulsantwort des dargestellten Digitalen Filters dritter Ordnung 3 lautet:   $\underline{g} = (1, 0, 1, 1)$. Die Eingangssequenz dieses Filters sei zeitlich unbegrenzt:   $\underline{u} = (1, 1, 0, 0, 0, \ \text{ ...})$.

Damit ergibt sich die (unendliche) Ausgangssequenz $\underline{x}$ im binären Galoisfeld   ⇒   ${\rm GF(2)}$:

\[\underline{x} = (\hspace{0.05cm}1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0, \hspace{0.05cm} \text{ ...} \hspace{0.05cm}) * (\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1\hspace{0.05cm})\]
\[\Rightarrow \hspace{0.3cm} \underline{x} =(\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0, \hspace{0.05cm}0,\hspace{0.05cm} \text{ ...} \hspace{0.05cm}) \oplus (\hspace{0.05cm}0,\hspace{0.05cm}\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm}0, \hspace{0.05cm} \hspace{0.05cm} \text{ ...}\hspace{0.05cm}) = (\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0, \hspace{0.05cm} \text{ ...} \hspace{0.05cm}) \hspace{0.05cm}.\]

Bei der herkömmlichen Faltung (für reelle Zahlen) hätte dagegen das Ergebnis gelautet:

\[\underline{x}= (\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}1,\hspace{0.05cm} 1,\hspace{0.05cm} 2,\hspace{0.05cm} 1,\hspace{0.05cm} 0, \text{ ...} \hspace{0.05cm}) \hspace{0.05cm}.\]


Zeitdiskrete Signale kann man aber auch durch Polynome bezüglich einer Dummy–Variablen repräsentieren.

$\text{Definition:}$  Die zum zeitdiskreten Signal $\underline{x} = (x_0, x_1, x_2, \ \text{...})$ gehörige $\boldsymbol{D}$–Transformierte lautet:

\[X(D) = x_0 + x_1 \cdot D + x_2 \cdot D^2 + \hspace{0.05cm}\text{...}\hspace{0.05cm}= \sum_{i = 0}^{\infty} x_i \cdot D\hspace{0.05cm}^i \hspace{0.05cm}.\]

Für diese spezielle Transformation in einen Bildbereich verwenden wir auch die Notation, wobei „D” für Delay Operator steht:

\[\underline{x} = (x_0, x_1, x_2,\hspace{0.05cm}...\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad X(D) = \sum_{i = 0}^{\infty} x_i \cdot D\hspace{0.05cm}^i \hspace{0.05cm}.\]


Hinweis:   In der Literatur wird manchmal $x(D)$ anstelle von $X(D)$ verwendet. Wir schreiben in in unserem Lerntutorial aber alle Bildbereichsfunktionen mit Großbuchstaben, zum Beispiel Fourier–, Laplace– und $D$–Transformation:

\[x(t) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}}\!\!\!-\!\!\bullet\hspace{0.15cm} X(f)\hspace{0.05cm},\hspace{0.4cm} x(t) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\bullet\hspace{0.15cm} X(p) \hspace{0.05cm},\hspace{0.4cm} \underline{x} \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm} X(D) \hspace{0.05cm}.\]


Wir wenden nun die $D$–Transformation auch auf die Informationssequenz $\underline{u}$ und die Impulsantwort $\underline{g}$ an. Aufgrund der zeitlichen Begrenzung von $\underline{g}$ ergibt sich die obere Summationsgrenze bei $G(D)$ zu $i = m$:

\[\underline{u} = (u_0, u_1, u_2,\hspace{0.05cm}\text{...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = \sum_{i = 0}^{\infty} u_i \cdot D\hspace{0.05cm}^i \hspace{0.05cm},\]
\[\underline{g} = (g_0, g_1, \hspace{0.05cm}\text{...}\hspace{0.05cm}, g_m) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G(D) = \sum_{i = 0}^{m} g_i \cdot D\hspace{0.05cm}^i \hspace{0.05cm}.\]

$\text{Satz:}$  Wie bei allen Spektraltransformationen gilt auch bei der $D$–Transformation im Bildbereich die Multiplikation, da die (diskreten) Zeitsignale $\underline{u}$ und $\underline{g}$ durch die Faltung verknüpft sind:

\[\underline{x} = \underline{u} * \underline{g} \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad X(D) = U(D) \cdot G(D) \hspace{0.05cm}.\]

Man bezeichnet – wie in der Systemtheorie allgemein üblich – auch die $D$–Transformierte $G(D)$ der Impulsantwort $\underline{g}$ als Übertragungsfunktion (englisch: Transfer Function). Der (recht einfache) $\rm Beweis$ dieses wichtigen Ergebnisses finden Sie in der Angabe zur Aufgabe 3.3Z


Digitales Filter mit Impulsantwort $(1, 0, 1, 1)$

$\text{Beispiel 4:}$  Wir betrachten wieder die zeitdiskreten Signale

\[\underline{u} = (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = 1+ D \hspace{0.05cm},\]
\[\underline{g} = (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G(D) = 1+ D^2 + D^3 \hspace{0.05cm}.\]

Wie im $\text{Beispiel 3}$ (auf dieser Seite oben) erhält man auch auf diesem Lösungsweg:

\[X(D) = U(D) \cdot G(D) = (1+D) \cdot (1+ D^2 + D^3) \]
\[\Rightarrow \hspace{0.3cm} X(D) = 1+ D^2 + D^3 +D + D^3 + D^4 = 1+ D + D^2 + D^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x} = (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}, \text{...} \hspace{0.05cm}) \hspace{0.05cm}.\]

Die Multiplikation mit $D$ im Bildbereich entspricht im Zeitbereich einer Verschiebung um eine Stelle nach rechts, weshalb man $D$ als Verzögerungsoperator (englisch: Delay Operator ) bezeichnet:

\[W(D) = D \cdot X(D) \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\circ\quad \underline{w} = (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}, \text{...} \hspace{0.05cm}) \hspace{0.05cm}.\]


Anwendung der D–Transformation auf Rate–1/n–Faltungscoder


Wir wenden nun die Ergebnisse der letzten Seite auf einen Faltungscoder an, wobei wir uns zunächst auf den Sonderfall $k = 1$ beschränken.

  • Ein solcher $(n, \ k = 1)$–Faltungscode lässt sich mit $n$ Digitalen Filtern realisieren, die auf der gleichen Informationssequenz $\underline{u}$ parallel arbeiten.
  • Die Grafik zeigt die Anordnung für den Codeparameter $n = 2$   ⇒   Coderate $R = 1/2$.


Zwei parallel arbeitende Filter, jeweils mit Ordnung $m$

Die folgenden Gleichungen gelten für beide Filter gleichermaßen, wobei für das obere Filter $j = 1$ und für das untere Filter $j = 2$ zu setzen ist:

  • Die Impulsantworten der beiden Filter ergeben sich zu
\[\underline{g}^{(j)} = (g_0^{(j)}, g_1^{(j)}, \hspace{0.05cm}\text{...}\hspace{0.05cm}, g_m^{(j)}\hspace{0.01cm}) \hspace{0.05cm},\hspace{0.2cm}{\rm mit }\hspace{0.15cm} j \in \{1,2\}\hspace{0.05cm}.\]
  • Die zwei Ausgangssequenzen lauten, wobei berücksichtigt ist, dass beide Filter auf der gleichen Eingangssequenz $\underline{u} = (u_0, u_1, u_2, \hspace{0.05cm} \text{...})$ arbeiten:
\[\underline{x}^{(j)} = (x_0^{(j)}, x_1^{(j)}, x_2^{(j)}, \hspace{0.05cm}\text{...}\hspace{0.05cm}) = \underline{u} \cdot \underline{g}^{(j)} \hspace{0.05cm},\hspace{0.2cm}{\rm mit }\hspace{0.15cm} j \in \{1,2\}\hspace{0.05cm}.\]
  • Für die $D$–Transformierten der Ausgangssequenzen gilt:
\[X^{(j)}(D) = U(D) \cdot G^{(j)}(D) \hspace{0.05cm},\hspace{0.2cm}{\rm mit }\hspace{0.15cm} j \in \{1,2\}\hspace{0.05cm}.\]

Um diesen Sachverhalt kompakter darstellen zu können, definieren wir nun folgende vektorielle Größen eines Faltungscodes der Rate $1/n$:

$\text{Definition:}$  Die $D$–Übertragungsfunktionen der $n$ parallel angeordneten digitalen Filter werden im Vektor $\underline{G}(D)$ zusammengefasst:

\[\underline{G}(D) = \left ( G^{(1)}(D), G^{(2)}(D), \hspace{0.05cm}\text{...}\hspace{0.1cm}, G^{(n)} (D) \right )\hspace{0.05cm}.\]
  • Der Vektor $\underline{X}(D)$ beinhaltet die $D$–Transformierten der $n$ Codesequenzen $\underline{x}^{(1)}, \underline{x}^{(2)}, \ \text{...} \ , \underline{x}^{(n)}$:
\[\underline{X}(D) = \left ( X^{(1)}(D), X^{(2)}(D), \hspace{0.05cm}\text{...}\hspace{0.1cm}, X^{(n)} (D) \right )\hspace{0.05cm}.\]
  • Damit erhält man die folgende Vektorgleichung:
\[\underline{X}(D) = U(D) \cdot \underline{G}(D)\hspace{0.05cm}.\]
  • Aufgrund des Codeparameters $k = 1$ ist $U(D)$ hier keine vektorielle Größe.


Faltungscoder mit $n = 2, k = 1, m = 2$

$\text{Beispiel 5:}$  Wir betrachten den Faltungscodierer mit den Codeparametern $n = 2, k = 1, m = 2$. Für diesen gilt:

\[\underline{g}^{(1)} =(\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G(D) = 1+ D + D^2 \hspace{0.05cm},\]
\[\underline{g}^{(2)}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G(D) = 1+ D^2 \]
\[\Rightarrow \hspace{0.3cm} \underline{G}(D) = \big ( 1+ D + D^2 \hspace{0.05cm}, \hspace{0.1cm}1+ D^2 \big )\hspace{0.05cm}.\]

Die Informationssequenz sei $\underline{u} = (1, 0, 1, 1)$   ⇒   $D$–Transformierte $U(D) = 1 + D^2 + D^3$. Damit erhält man:

\[\underline{X}(D) = \left ( X^{(1)}(D),\hspace{0.1cm} X^{(2)}(D) \right ) = U(D) \cdot \underline{G}(D) \hspace{0.05cm}, \hspace{0.2cm}\]

wobei

\[{X}^{(1)}(D) = (1+ D^2 + D^3) \cdot (1+ D + D^2)=1+ D + D^2 + D^2 + D^3 + D^4 + D^3 + D^4 + D^5 = 1+ D + D^5\]
\[\Rightarrow \hspace{0.3cm} \underline{x}^{(1)} = (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.05cm}) \hspace{0.05cm},\]
\[{X}^{(2)}(D) = (1+ D^2 + D^3) \cdot (1+ D^2)=1+ D^2 + D^2 + D^4 + D^3 + D^5 = 1+ D^3 + D^4 + D^5\]
\[\Rightarrow \underline{x}^{(2)} = (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.05cm}) \hspace{0.05cm}.\]

Das gleiche Ergebnis haben wir in der Aufgabe 3.1Z auf anderem Wege erhalten. Nach dem Multplexen der beiden Stränge erhält man wieder:  

$$\underline{x} = (11, 10, 00, 01, 01, 11, 00, 00, \hspace{0.05cm} \text{...} \hspace{0.05cm}).$$


Übertragungsfunktionsmatrix – Transfer Function Matrix


Allgemeiner $(n, \ k)$–Faltungscoder

Wir haben gesehen, dass ein Faltungscode der Rate $1/n$ sich am kompaktesten als Vektorgleichung im $D$–transformierten Bereich beschreiben lässt:   $\underline{X}(D) = U(D) \cdot \underline{G}(D)$.

Nun erweitern wir das Resultat auf Faltungscodierer mit mehr als einem Eingang   ⇒   $k ≥ 2$ (siehe Grafik).

Um einen Faltungscode der Rate $k/n$ im $D$–Bereich abbilden zu können, muss die Dimension obiger Vektorgleichung hinsichtlich Eingang und Übertragungsfunktion erhöht werden:

\[\underline{X}(D) = \underline{U}(D) \cdot { \boldsymbol{\rm G}}(D)\hspace{0.05cm}.\]


Dazu sind folgende Maßnahmen erforderlich:

  • Aus der skalaren Funktion $U(D)$ wird der Vektor $\underline{U}(D) = (U^{(1)}(D), \ U^{(2)}(D), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ U^{(k)}(D))$.
  • Aus dem Vektor $\underline{G}(D)$ wird die $k × n$–Übertragungsfunktionsmatrix $\mathbf{G}(D)$ (englisch: Transfer Function Matrix oder Polynomial Generator Matrix):
\[{\boldsymbol{\rm G}}(D)=\begin{pmatrix} G_1^{(1)}(D) & G_1^{(2)}(D) & \hspace{0.05cm} \text{...} \hspace{0.05cm} & G_1^{(n)}(D)\\ G_2^{(1)}(D) & G_2^{(2)}(D) & \hspace{0.05cm} \text{...} \hspace{0.05cm} & G_2^{(n)}(D)\\ \vdots & \vdots & & \vdots\\ G_k^{(1)}(D) & G_k^{(2)}(D) & \hspace{0.05cm} \text{...} \hspace{0.05cm} & G_k^{(n)}(D) \end{pmatrix}\hspace{0.05cm}.\]
  • Jedes der $k \cdot n$ Matrixelemente $G_i^{(j)}(D)$ mit $1 ≤ i ≤ k, 1 ≤ j ≤ n$ ist ein Polynom über der Dummy–Variablen $D$ im Galoisfeld ${\rm GF}(2)$, maximal vom Grad $m$, wobei $m$ das Gedächtnis angibt.
  • Für die obige Übertragungsfunktionsmatrix kann mit den zu Beginn dieses Kapitels definierten Teilmatrizen $\mathbf{G}_0, \ \text{...} \ , \mathbf{G}_m$ auch geschrieben werden (als Index verwenden wir wieder $l$):
\[{\boldsymbol{\rm G}}(D) = \sum_{l = 0}^{m} {\boldsymbol{\rm G}}_l \cdot D\hspace{0.03cm}^l = {\boldsymbol{\rm G}}_0 + {\boldsymbol{\rm G}}_1 \cdot D + {\boldsymbol{\rm G}}_2 \cdot D^2 + \hspace{0.05cm} \text{...} \hspace{0.05cm}+ {\boldsymbol{\rm G}}_m \cdot D\hspace{0.03cm}^m \hspace{0.05cm}.\]
Faltungscoder mit $k = 2, n = 3, m = 1$

$\text{Beispiel 6:}$  Wir betrachten den $(n = 3, \ k = 2, \ m = 1)$–Faltungscoder, dessen Teilmatrizen bereits im $\text{Beispiel 1}$ wie folgt ermittelt wurden:

\[{ \boldsymbol{\rm G} }_0 = \begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.5cm} { \boldsymbol{\rm G} }_1 = \begin{pmatrix} 1 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix}\hspace{0.05cm}.\]

Wegen $m = 1$ existieren keine Teilmatrizen für $l ≥ 2$. Damit lautet die Übertragungsfunktionsmatrix:

\[{\boldsymbol{\rm G} }(D) = {\boldsymbol{\rm G} }_0 + {\boldsymbol{\rm G} }_1 \cdot D = \begin{pmatrix} 1+D & D & 1+D\\ D & 1 & 1 \end{pmatrix} \hspace{0.05cm}.\]

Die (zeitlich begrenzte) Informationssequenz sei $\underline{u} = (0, 1, 1, 0, 0, 0, 1, 1)$, woraus sich die beiden Eingangsfolgen wie folgt ergeben:

\[\underline{u}^{(1)} = (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad {U}^{(1)}(D) = D + D^3 \hspace{0.05cm},\]
\[\underline{u}^{(2)} = (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad {U}^{(2)}(D) = 1 + D^3 \hspace{0.05cm}.\]

Daraus folgt für den Vektor der $D$–Transformierten am Coderausgang:

\[\underline{X}(D) = \big (\hspace{0.05cm} {X}^{(1)}(D)\hspace{0.05cm}, \hspace{0.05cm} {X}^{(2)}(D)\hspace{0.05cm}, \hspace{0.05cm} {X}^{(3)}(D)\hspace{0.05cm}\big ) = \underline{U}(D) \cdot {\boldsymbol{\rm G} }(D) \begin{pmatrix} D+D^3 & 1+D^3 \end{pmatrix} \cdot \begin{pmatrix} 1+D & D & 1+D\\ D & 1 & 1 \end{pmatrix}\hspace{0.05cm}.\]

Damit ergeben sich in den drei Strängen folgende Codesquenzen:

\[{X}^{(1)}(D) = (D + D^3) \cdot (1+D) + (1 + D^3) \cdot D =D + D^2 + D^3 + D^4 + D + D^4 = D^2 + D^3\]
\[\Rightarrow \hspace{0.3cm} \underline{x}^{(1)} = (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.05cm}) \hspace{0.05cm},\]
\[{X}^{(2)}(D)= (D + D^3) \cdot D + (1 + D^3) \cdot 1 = D^2 + D^4 + 1 + D^3 = 1+D^2 + D^3 + D^4\]
\[\Rightarrow \hspace{0.3cm}\underline{x}^{(2)} = (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\hspace{0.05cm} \text{...} \hspace{0.05cm}) \hspace{0.05cm},\]
\[{X}^{(3)}(D)=(D + D^3) \cdot (1 + D) + (1 + D^3) \cdot 1 = D + D^2 + D^3+ D^4 + 1 + D^3 = 1+ D + D^2 + D^4\]
\[\Rightarrow \hspace{0.3cm}\underline{x}^{(3)} = (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\hspace{0.05cm} \text{...} \hspace{0.05cm}) \hspace{0.05cm}.\]

Die gleichen Ergebnisse haben wir auf anderen Wegen bereits in vorherigen Beispielen erhalten:


Systematische Faltungscodes


Die Polynomrepräsentation anhand der Übertragungsfunktionsmtrix $\mathbf{G}(D)$ ermöglicht Einblicke in die Struktur eines Faltungscodes.

  • Beispielsweise erkennt man anhand dieser $k × n$–Matrix, ob es sich um einen systematischen Code handelt.
  • Darunter versteht man einen Code, bei dem die Codesequenzen $\underline{x}^{(1)}, \ \text{...} \ , \ \underline{x}^{(k)}$ mit den Informationssequenzen $\underline{u}^{(1)}, \ \text{...} \ , \ \underline{u}^{(k)}$ identisch sind.
  • Die Grafik zeigt beispielhaft einen systematischen $(n = 4, k = 3)$–Faltungscode.


Systematischer Faltungscode mit $k = 3, n = 4$

Ein systematischer $(n, k)$–Faltungscode liegt immer dann vor, wenn die Übertragungsfunktionsmatrix (mit $k$ Zeilen und $n$ Spalten) folgendes Aussehen hat:

\[{\boldsymbol{\rm G}}(D) = {\boldsymbol{\rm G}}_{\rm sys}(D) = \big [ \hspace{0.05cm} {\boldsymbol{\rm I}}_k\hspace{0.05cm} ; \hspace{0.1cm} {\boldsymbol{\rm P}}(D) \hspace{0.05cm}\big ] \hspace{0.05cm}.\]

Hierbei ist folgende Nomenklatur verwendet:

  • $\mathbf{I}_k$ bezeichnet eine diagonale Einheitsmatrix der Dimension $k × k$.
  • $\mathbf{P}(D)$ ist eine $k × (n \, –k)$–Matrix, wobei jedes Matrixelement ein Polynom in $D$ beschreibt.

$\text{Beispiel 7:}$  Ein systematischer Faltungscode mit $n = 3, \ k = 2, \ m = 2$ könnte beispielsweise die folgende Übertragungsfunktionsmatrix aufweisen:

\[{\boldsymbol{\rm G} }_{\rm sys}(D) = \begin{pmatrix} 1 & 0 & 1+D^2\\ 0 & 1 & 1+D \end{pmatrix}\hspace{0.05cm}.\]

Andere systematische Faltungscodes mit gleichem $n$ und gleichem $k$ unterscheiden sich demgegenüber nur durch die beiden Matrixelemente in der letzten Spalte.



Äquivalenter systematischer Faltungscode


Zu jedem $(n, k)$–Faltungscode mit Matrix $\mathbf{G}(D)$ gibt es einen äquivalenten systematischen Code, dessen $D$–Matrix wir mit $\mathbf{G}_{\rm sys}(D)$ benennen.

Unterteilung von $\mathbf{G}(D)$ in $\mathbf{T}(D)$ und $\mathbf{Q}(D)$

Um von der Übertragungsfunktionsmatrix $\mathbf{G}(D)$ zur Matrix $\mathbf{G}_{\rm sys}(D)$ des äquivalenten systematischen Faltungscodes zu kommen, geht man gemäß der Grafik wie folgt vor:

  • Man unterteilt die $k × n$–Matrix $\mathbf{G}(D)$ in eine quadratische Matrix $\mathbf{T}(D)$ mit $k$ Zeilen und $k$ Spalten und bezeichnet den Rest mit $\mathbf{Q}(D)$.
  • Anschließend berechnet man die zu $\mathbf{T}(D)$ inverse Matrix $\mathbf{T}^{–1}(D)$ und daraus die Matrix für den äquivanten systematischen Code:
\[{\boldsymbol{\rm G}}_{\rm sys}(D)= {\boldsymbol{\rm T}}^{-1}(D) \cdot {\boldsymbol{\rm G}}(D) \hspace{0.05cm}.\]
  • Da $\mathbf{T}^{–1}(D) \cdot \mathbf{T}(D)$ die $k × k$–Einheitsmatrix $\mathbf{I}_k$ ergibt, kann die Übertragungsfunktionsmatrix des äquivalenten systematischen Codes in der gewünschten Form geschrieben werden:
\[{\boldsymbol{\rm G}}_{\rm sys}(D) = \big [ \hspace{0.05cm} {\boldsymbol{\rm I}}_k\hspace{0.05cm} ; \hspace{0.1cm} {\boldsymbol{\rm P}}(D) \hspace{0.05cm}\big ] \hspace{0.5cm}{\rm mit}\hspace{0.5cm} {\boldsymbol{\rm P}}(D)= {\boldsymbol{\rm T}}^{-1}(D) \cdot {\boldsymbol{\rm Q}}(D) \hspace{0.05cm}. \hspace{0.05cm}\]
Faltungscodierer der Rate $2/3$

$\text{Beispiel 8:}$  Der auf den letzten Seiten schon häufiger betrachtete Coder der Rate $2/3$ ist nicht systematisch, weil zum Beispiel $\underline{x}^{(1)} ≠ \underline{u}^{(1)}, \ \underline{x}^{(2)} ≠ \underline{u}^{(2)}$ gilt (siehe nebenstehende Coderschaltung).

Man erkennt dies aber auch anhand der Übertragungsfunktionsmatrix:

\[{\boldsymbol{\rm G} }(D) = \big [ \hspace{0.05cm} {\boldsymbol{\rm T} }(D)\hspace{0.05cm} ; \hspace{0.1cm} {\boldsymbol{\rm Q} }(D) \hspace{0.05cm}\big ]\]
\[\Rightarrow \hspace{0.3cm} {\boldsymbol{\rm T} }(D) = \begin{pmatrix} 1+D & D\\ D & 1 \end{pmatrix}\hspace{0.05cm},\hspace{0.2cm} {\boldsymbol{\rm Q} }(D) = \begin{pmatrix} 1+D \\ 1 \end{pmatrix}\hspace{0.05cm}.\]

Die Determinante von $\mathbf{T}(D)$ ergibt sich zu $(1 + D) \cdot 1 + D \cdot D = 1 + D + D^2$ und ist ungleich $0$.

Somit kann für die Inverse von $\mathbf{T}(D)$ geschrieben werden (Vertauschung der Diagonalelemente!):

\[{\boldsymbol{\rm T} }^{-1}(D) = \frac{1}{1+D+D^2} \cdot \begin{pmatrix} 1 & D\\ D & 1+D \end{pmatrix}\hspace{0.05cm}.\]

Das Produkt $\mathbf{T}(D) \cdot \mathbf{T}^{–1}(D)$ ergibt die Einheitsmatrix $\mathbf{I}_2$, und für die dritte Spalte von $\mathbf{G}_{\rm sys}(D)$ gilt:

\[{\boldsymbol{\rm P} }(D)= {\boldsymbol{\rm T} }^{-1}(D) \cdot {\boldsymbol{\rm Q} }(D) = \frac{1}{1+D+D^2} \cdot \begin{pmatrix} 1 & D\\ D & 1+D \end{pmatrix}\cdot \begin{pmatrix} 1+D\\ 1 \end{pmatrix} \]
\[\Rightarrow \hspace{0.3cm} {\boldsymbol{\rm P} }(D) = \frac{1}{1+D+D^2} \cdot \begin{pmatrix} (1+D) + D \\ D \cdot (1+D) + (1+D) \end{pmatrix} = \frac{1}{1+D+D^2} \cdot \begin{pmatrix} 1 \\ 1+D^2 \end{pmatrix} \]
\[\Rightarrow \hspace{0.2cm}{\boldsymbol{\rm G} }_{\rm sys}(D) = \begin{pmatrix} 1 & 0 & \frac{1}{1+D+D^2}\\ 0 & 1 &\frac{1+D^2}{1+D+D^2} \end{pmatrix}\hspace{0.05cm}. \]

Zu klären ist noch, wie das Filter einer solchen gebrochen–rationalen Übertragungsfunktion aussieht.


Filterstruktur bei gebrochen–rationaler Übertragungsfunktion


Rekursives Filter zur Realisierung von $G(D) = A(D)/B(D)$

Hat eine Übertragungsfunktion die Form $G(D) = A(D)/B(D)$, so bezeichnet man das zugehörige Filter als rekursiv.

Bei einem rekursiven Faltungscodierer mit dem Gedächtnis $m$ kann für die beiden Polynome $A(D)$ und $B(D)$ allgemein geschrieben werden:

\[A(D) = \sum_{l = 0}^{m} a_l \cdot D\hspace{0.05cm}^l = a_0 + a_1 \cdot D + a_2 \cdot D^2 +\ \text{...} \ \hspace{0.05cm} + a_m \cdot D\hspace{0.05cm}^m \hspace{0.05cm},\]
\[B(D) = 1 + \sum_{l = 1}^{m} b_l \cdot D\hspace{0.05cm}^l = 1 + b_1 \cdot D + b_2 \cdot D^2 + \ \text{...} \ \hspace{0.05cm} + b_m \cdot D\hspace{0.05cm}^m \hspace{0.05cm}.\]

Die Grafik zeigt die entsprechende Filterstruktur in der so genannten Controller Canonical Form:

  • Die Koeffizienten $a_0, \ \text{...} \ , \ a_m$ beschreiben den Vorwärtszweig.
  • Die Koeffizienten $b_1, \ \text{...} \ , \ b_m$ bilden eine Rückkopplung.
  • Alle Koeffizienten sind binär, also $1$ (durchgehende Verbindung) oder $0$ (fehlende Verbindung).


Filter: $G(D) = (1+D^2)/(1+D +D^2)$

$\text{Beispiel 9:}$  Die rechts skizzierte Filterstruktur lässt sich wie folgt beschreiben:

\[x_i = w_i + w_{i-2} \hspace{0.05cm},\]
\[w_i = u_i + w_{i-1}+ w_{i-2} \hspace{0.05cm}.\]

Entsprechend gilt für die $D$–Transformierten:

\[X(D) =W(D) + W(D) \cdot D^2 =W(D) \cdot \left ( 1+ D^2 \right ) \hspace{0.05cm},\]
\[W(D) = \hspace{0.08cm} U(D) + W(D) \cdot D+ W(D) \cdot D^2\]
\[\Rightarrow \hspace{0.3cm} U(D) = W(D) \cdot \left ( 1+ D + D^2 \right ) \hspace{0.05cm}.\]

Somit erhält man für die Übertragungsfunktion dieses Filters:

\[G(D) = \frac{X(D)}{U(D)} = \frac{1+D^2}{1+D+D^2} \hspace{0.05cm}. \]

Im $\text{Beispiel 8}$ zum äquivalenten systematischen Faltungscode hat sich im unteren Zweig genau dieser Ausdruck ergeben.


Aufgaben zum Kapitel


Aufgabe 3.2: G–Matrix eines Faltungscodierers

Aufgabe 3.2Z: (3, 1, 3)–Faltungscodierer

Aufgabe 3.3: Codesequenzberechnung über U(D) und G(D)

Aufgabe 3.3Z: Faltung und D–Transformation

Aufgabe 3.4: Systematische Faltungscodes

Aufgabe 3.4Z: Äquivalente Faltungscodes?

Aufgabe 3.5: Rekursive Filter für GF(2)