Aufgabe 5.7Z: Anwendung der IDFT

Aus LNTwww
Wechseln zu:Navigation, Suche

Drei Sätze  $\rm A$,  $\rm B$  und  $\rm C$  für die Spektralkoeffizienten

Bei der  Diskreten Fouriertransformation  (DFT) werden aus den Zeitabtastwerten  $d(ν)$  mit der Laufvariablen  $ν = 0$, ... , $N – 1$  die diskreten Spektralkoeffizienten  $D(μ)$  mit  $μ = 0$, ... , $N – 1$  wie folgt berechnet:

$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

Hierbei ist mit  $w$  der komplexe Drehfaktor abgekürzt, der wie folgt definiert ist:

$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$

Entsprechend gilt für die  Inverse Diskrete Fouriertransformation  (IDFT) quasi als „Umkehrfunktion” der DFT:

$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

In dieser Aufgabe sollen für verschiedene komplexwertige Beispielfolgen  $D(μ)$ – die in der Tabelle mit  $\rm A$,  $\rm B$  und  $\rm C$  bezeichnet sind – die Zeitkoeffizienten  $d(ν)$  ermittelt werden. Es gilt somit stets  $N = 8$.




Hinweise:


Fragebogen

1

Wie lauten die Zeitkoeffizienten  $d(ν)$  für die Spektralkoeffizienten  $D(μ)$  gemäß  $\rm A$?
Geben Sie den ersten Koeffizienten  $d(1)$  mit Real– und Imaginärteil ein.

${\rm Re}\big[d(1)\big] \ = \ $

${\rm Im}\big[d(1)\big] \ = \ $

2

Wie lauten die Zeitkoeffizienten  $d(ν)$  für die Spektralkoeffizienten  $D(μ)$  gemäß  $\rm B$?
Geben Sie den ersten Koeffizienten  $d(1)$  mit Real– und Imaginärteil ein.

${\rm Re}\big[d(1)\big] \ = \ $

${\rm Im}\big[d(1)\big] \ = \ $

3

Wie lauten die Zeitkoeffizienten  $d(ν)$  für die Spektralkoeffizienten  $D(μ)$  gemäß  $\rm C$?
Geben Sie den ersten Koeffizienten  $d(1)$  mit Real– und Imaginärteil ein.

${\rm Re}\big[d(1)\big] \ = \ $

${\rm Im}\big[d(1)\big] \ = \ $


Musterlösung

(1)  Wegen $D(μ) = 0$ für $μ ≠ 0$ sind alle Zeitkoeffizienten $d(ν) = D(0)$. Damit gilt auch:

$${\rm Re}[d(1)] \hspace{0.15cm}\underline {=+ 1}, \hspace{0.3cm}{\rm Im}[d(1)] \hspace{0.15cm}\underline {= -1}.$$


(2)  Hier sind alle Spektralkoeffizienten Null mit Ausnahme von $D_1 = 1 –{\rm j}$ und $D_7 = 1 + {\rm j}$. Daraus folgt für alle Zeitkoeffizienten ($0 ≤ ν ≤ 7$):

$$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {7\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}.$$

Aufgrund der Periodizität gilt aber auch:

$$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ +{\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}= \left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} + {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right]+ {\rm{j}} \cdot\left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} - {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right].$$

Mit dem Satz von Euler lässt sich dieser Ausdruck wie folgt umformen:

$$d(\nu) = 2 \cdot \cos \left( {\pi}/{4}\cdot \nu \right)+ 2 \cdot \sin \left( {\pi}/{4}\cdot \nu \right).$$

Diese Zeitfunktion $d(ν)$ ist rein reell und kennzeichnet eine harmonische Schwingung mit der Amplitude $ 2 \cdot \sqrt{2}$ und der Phase $φ = 45^\circ$. Der Zeitkoeffizient mit Index $ν = 1$ gibt das Maximum an:

$$ {\rm Re}[d(1)] = 2 \cdot \frac {\sqrt{2}}{2}+ 2 \cdot \frac {\sqrt{2}}{2} = 2 \cdot {\sqrt{2}} \hspace{0.15cm}\underline {\approx 2.828}, \hspace{0.5cm}{\rm Im}[d(1)] \hspace{0.15cm}\underline {= 0}.$$

(3)  Entsprechend der allgemeinen Gleichung gilt:

$$d(1) = \sum\limits_{\mu = 0}^{7} D(\mu)\cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\mu} = \left[ D(1) + D(7) \right]\cdot \cos \left( {\pi}/{4} \right) + \left[ D(3) + D(5) \right]\cdot \cos \left( {3\pi}/{4} \right)+ {\rm j} \cdot \left[ D(2) - D(6) \right]\cdot \sin \left( {\pi}/{2} \right) + D(4) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}}.$$

Die ersten drei Terme liefern rein reelle Ergebnisse:

$${\rm Re}[d(1)] = (1+1) \cdot \frac{1}{\sqrt{2}}-(3+3) \cdot \frac{1}{\sqrt{2}}+ {\rm j} \cdot4{\rm j} \cdot 1 = -\frac{4}{\sqrt{2}}-4\hspace{0.15cm}\underline { \approx -6.829}.$$

Für den Imaginärteil ergibt sich:

$${\rm Im}[d(1)] = {\rm Im}\left[4 \cdot{\rm j} \cdot (-1) \right] \hspace{0.15cm}\underline {= -4}.$$