Einige systemtheoretische Tiefpassfunktionen

Aus LNTwww
< Lineare zeitinvariante Systeme
Version vom 1. Mai 2016, 11:27 Uhr von Christoph (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{Header |Untermenü=Systemtheoretische Grundlagen |Vorherige Seite=Systembeschreibung im Zeitbereich |Nächste Seite=Klassifizierung der Verzerrungen }} ==A…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Allgemeine Bemerkungen

Alle auf den nächsten Seiten beschriebenen Tiefpassfunktionen weisen die folgenden Eigenschaften auf:

  • Der Frequenzgang $H(f)$ ist stets reell und gerade, so dass nach dem Zuordnungssatz auch die zugehörige Impulsantwort $h(t)$ stets reell und gerade ist.
  • Damit ist offensichtlich, dass die hier betrachteten Systeme akausal und somit nicht realisierbar sind. Die Beschreibung kausaler Systeme erfolgt im Kapitel 3 dieses Buches.
  • Der Vorteil dieser systemtheoretischen Filterfunktionen ist die einfache Beschreibung durch maximal zwei Parameter, so dass der Filtereinfluss durchschaubar dargestellt werden kann.
  • Der wichtigste Funktionsparameter ist die äquivalente Bandbreite entsprechend der Definition über das flächengleiche Rechteck:

$$\Delta f = \frac{1}{H(f=0)}\cdot \int\limits_{-\infty}^{+\infty}H(f) \hspace{0.15cm} {\rm d}f.$$

  • Nach dem so genannten Reziprozitätsgesetz liegt somit auch die äquivalente Zeitdauer der Impulsantwort fest, die ebenfalls über das flächengleiche Rechteck definiert ist:

$$\Delta t = \frac{1}{h(t=0)}\cdot \int\limits_{-\infty}^{+\infty}h(t) \hspace{0.15cm} {\rm d}t = \frac{1}{\Delta f}.$$

  • Der Gleichsignalübertragungsfaktor wird – wenn nicht explizit etwas Anderes vermerkt ist – stets zu $H(f$ = 0) = 1 angenommen.
  • Aus jeder Tiefpassfunktion lassen sich entsprechende Hochpassfunktionen ableiten, wie auf der letzten Theorieseite dieses Abschnitts gezeigt wird.