Mengentheoretische Grundlagen

Aus LNTwww
< Stochastische Signaltheorie
Version vom 19. Mai 2016, 10:19 Uhr von Christoph (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{Header |Untermenü=Wahrscheinlichkeitsrechnung |Vorherige Seite=Einige grundlegende Definitionen |Nächste Seite=Statistische Abhängigkeit und Unabhängig…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Venndiagramm, Grundmenge und leere Menge

In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst werden. Die Thematik wird auch im folgenden Lernvideo am Beispiel europäischer Staaten behandelt:

Ein wichtiges Hilfsmittel der Mengenlehre ist das Venndiagramm gemäß dem folgenden Bild.


Mengendarstellung im Venndiagramm


Angewandt auf die Wahrscheinlichkeitsrechnung sind hier die Ereignisse $A_i$ als Flächenbereiche dargestellt. Zur einfacheren Beschreibung bezeichnen wir hier die Ereignisse im Gegensatz zu Kapitel 1.1 nicht mit $A_1, A_2, A_3$ usw., sondern mit $A, B$ und $C$. Die Gesamtfläche entspricht der Grundmenge $G$.

Die Grundmenge $G$ beinhaltet alle möglichen Ergebnisse und steht für das sichere Ereignis, das definitionsgemäß mit der Wahrscheinlichkeit „Eins” eintritt: Pr( $G$) = 1. Zum Beispiel ist beim Zufallsexperiment Werfen eines Würfels die Wahrscheinlichkeit für das Ereignis „die Augenzahl ist kleiner oder gleich 6” identisch 1.

Dagegen beinhaltet die leere Menge $ϕ$ kein einziges Element. Bezogen auf Ereignisse gibt die leere Menge das unmögliche Ereignis mit der Wahrscheinlichkeit Pr( $ϕ$) = 0 an. Beispielsweise ist beim Experiment Werfen eines Würfels die Wahrscheinlichkeit für das Ereignis „die Augenzahl ist größer als 6” identisch 0.

Weiter ist anzumerken, dass nicht jedes Ereignis $A$ mit Pr( $A$) = 0 wirklich nie eintreten kann. So ist die Wahrscheinlichkeit des Ereignisses „der Rauschwert $n$ ist identisch 0” zwar verschwindend klein und es gilt Pr( $n$ = 0) = 0, wenn $n$ durch eine kontinuierliche Zufallsgröße beschrieben wird. Trotzdem ist es natürlich möglich, dass irgendwann auch der exakte Rauschwert $n$ = 0 auftritt.

Vereinigungsmenge

Anhand des Venndiagramms werden nun einige mengentheoretische Verknüpfungen erläutert.

Die Vereinigungsmenge $C$ zweier Mengen $A$ und $B$ beinhaltet alle die Elemente, die entweder in der Menge $A$ oder der Menge $B$ oder in beiden enthalten sind (englisch: Set Union ). Formelmäßig wird dieser Zusammenhang wie folgt ausgedrückt: $$\ C = A \cup B \hspace{0.1cm}(= A + B).$$


In der Literatur ist auch die Bezeichnung Summenmenge gebräuchlich und es wird manchmal das Pluszeichen benutzt. In unserem Tutorial verwenden wir jedoch ausschließlich das $∪$-Zeichen.


Vereinigungsmenge im Venndiagramm


Anhand des Bildes sind die folgenden Gesetzmäßigkeiten der Mengenlehre leicht einzusehen: $$A \cup \it \phi = A \rm \hspace{3.6cm}(Vereinigung \hspace{0.15cm}mit \hspace{0.15cm}der \hspace{0.15cm}leeren \hspace{0.15cm}Menge),$$ $$A\cup G = G \rm \hspace{3.6cm}(Vereinigung \hspace{0.15cm}mit \hspace{0.15cm}der \hspace{0.15cm}Grundmenge),$$ $$A\cup A = A \hspace{3.6cm}(\rm Tautologiegesetz),$$ $$A\cup B = B\cup A \hspace{2.75cm}(\rm Kommutativgesetz),$$ $$(A\cup B)\cup C = A\cup (B\cup C) \hspace{0.55cm}(\rm Assoziativgesetz).$$

Ist über die Ereignismengen $A$ und $B$ nichts weiter bekannt, so können für die Wahrscheinlichkeit der Vereinigungsmenge nur eine untere und eine obere Schranke angegeben werden: $$\rm Max(Pr (\it A), \rm Pr (\it B)) \le \rm Pr (\it A \cup \it B) \le \rm Pr (\it A) + \rm Pr (\it B).$$

Die Wahrscheinlichkeit der Vereinigungsmenge ist gleich der unteren Schranke, wenn $A$ eine Teilmenge von $B$ ist oder umgekehrt. Die obere Schranke gilt für disjunkte Mengen.

Betrachtet man die beiden Ereignisse

  • $A =$ „die Augenzahl ist größer oder gleich 5” = {5, 6},
  • $B =$ „die Augenzahl ist geradzahlig” = {2, 4, 6},


so beinhaltet die Vereinigungsmenge die vier Elemente {2, 4, 5, 6}. Die Wahrscheinlichkeiten sind Pr( $A$) = 2/6, Pr( $B$) = 3/6 und Pr( $A ∪ B$) = 4/6. Die untere und die obere Schranke gemäß den hier angegebenen Ungleichungen ergeben sich zu 3/6 und 5/6.