Aufgabe 4.6: Ortskurve bei ESB-AM
Wir betrachten das analytische Signal $s_+(t)$ mit der Spektralfunktion
$$S_{\rm +}(f) = 1 \cdot \delta (f - f_{\rm 50})- {\rm j} \cdot \delta (f - f_{\rm 60}) .$$
Hierbei stehen $f_{50}$ und $f_{60}$ als Abkürzungen für die Frequenzen 50 kHz bzw. 60 kHz.
In dieser Aufgabe soll der Verlauf des äquivalenten Tiefpass-Signals $s_{TP}(t)$ analysiert werden, das in diesem Tutorial auch als Ortskurve bezeichnet wird.
- In den Teilaufgaben (1) bis (3) gehen wir davon aus, dass das Signal $s(t)$ durch eine Einseitenband-Amplitudenmodulation des sinusförmigen Nachrichtensignals der Frequenz $f_{\rm N} = 10 \ \text{ kHz}$ mit cosinusförmigem Träger bei $f_{\rm T} = f_{50}$ entstanden ist, wobei nur das obere Seitenband (OSB) übertragen wird.
- Dagegen wird bei der Teilaufgabe (4) von der Trägerfrequenz $f_{\rm T} = f_{60}$ ausgegangen. Diese Annahme setzt voraus, dass eine USB-Modulation stattgefunden hat.
Hinweise:
- Die Aufgabe gehört zum Kapitel Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Sie können Ihre Lösung mit dem folgenden Interaktionsmodul überprüfen:
Ortskurve – Darstellung des äquivalenten Tiefpass-Signals
Fragebogen
Musterlösung
1. Das Spektrum des äquivalenten TP–Signals lautet mit der Trägerfrequenz $f_{\rm T} = f_{50} = 50 \ \text{ kHz}$:
$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 50}) = 1 \cdot \delta (f)- {\rm j} \cdot \delta (f - f_{\rm 10}) .$$
Damit ergibt sich für das dazugehörige Zeitsignal:
$$s_{\rm TP}(t) = {\rm 1 } - {\rm j} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$
Ausgehend vom Punkt $(1, –{\rm j})$ verläuft $s_{\rm TP}(t)$ auf einem Kreis mit Mittelpunkt $(1, 0)$ und Radius $1$. Die Periodendauer ist gleich dem Kehrwert der Frequenz: $T_0 = 1/f_{10} = 100 \ \mu \text{s})$ ⇒ Antwort 2.
2. Spaltet man obige Gleichung nach Real- und Imaginäranteil auf, so erhält man:
$$s_{\rm TP}(t) = {\rm 1 } + \sin({ \omega_{\rm 10} \hspace{0.05cm} t }) -{\rm j}\cdot \cos({ \omega_{\rm 10} \hspace{0.05cm} t }).$$
Dies führt zur Betragsfunktion
$$\begin{align*}a(t)& = |s_{\rm TP}(t)|=\sqrt{{\rm Re}\left[s_{\rm TP}(t)\right]^2 + {\rm Im}\left[s_{\rm TP}(t)\right]^2 }= \\ & = \sqrt{1 + 2 \sin(\omega_{\rm 10}\hspace{0.05cm} t)+ \sin^2(\omega_{\rm 10}\hspace{0.05cm} t)+ \cos^2(\omega_{\rm 10}\hspace{0.05cm} t)} = \sqrt{2 \cdot ( 1 + \sin(\omega_{\rm 10}\hspace{0.05cm} t))}.\end{align*}$$
- Der Maximalwert ergibt sich aus sin( $\omega_{10} \cdot t$ ) ≤ 1 zu $a_{\text{max}} \; \underline{= 2}$.
- Für den Minimalwert erhält man unter Berücksichtigung von $\sin(\omega_{10} \cdot t \geq -1$ )$: $a_{\text{min}}$ = 0. *Bei $t$ = 0 ist der Betrag gleich „Wurzel aus 2” = 1.414. '''3.''' Entsprechend der allgemeinen Definition gilt: '"`UNIQ-MathJax35-QINU`"' Für $t$ = 0 ist cos( $\omega_{10} \cdot t$ ) = 1 und sin( $\omega_{10} \cdot t$ ) = 0 und man erhält: '"`UNIQ-MathJax36-QINU`"' Dagegen gilt für $t$ = 25 μs = $T_0$/4: '"`UNIQ-MathJax37-QINU`"' Die beiden Winkel kann man auch aus obiger Grafik ablesen. Der Phasenwert bei $t$ = 75 μs muss durch Grenzübergang bestimmt werden, da hier sowohl der Real- als auch der Imaginärteil 0 werden und somit das Argument der arctan–Funktion unbestimmt ist. Man erhält $\Phi(t$ = 75 μs) = 0. Dieses Ergebnis soll hier numerisch hergeleitet werden. Berechnet man die Phasenfunktion für $t$ = 74 μs, so erhält man mit $\omega_{10} \cdot t$ = 1.48 $\pi$ = 266.4°: '"`UNIQ-MathJax38-QINU`"' Entsprechend gilt für $t$ = 76 μs mit $\omega_{10} \cdot t$ = 1.52 $\pi$ = 273.6 °: '"`UNIQ-MathJax39-QINU`"' Diese Zahlenwerte lassen darauf schließen, dass die Grenzwerte für $t$ → 75 μs sich zu ±90° ergeben, je nachdem, ob man sich diesem Wert von oben oder unten nähert. Der Phasenwert bei exakt $t$ = 75 μs ist gleich dem Mittelwert zwischen rechts- und linksseitigem Grenzwert, also 0. [[Datei:P_ID767__Sig_A_4_6_d.png|250px|right|Ortskurve für USB (ML zu Aufgabe A4.6)]] '''4.''' Nun lauten die Gleichungen für Zeit– und Frequenzbereich: '"`UNIQ-MathJax40-QINU`"' '"`UNIQ-MathJax41-QINU`"' In der Grafik ist sTP(t) dargestellt. Man erkennt: Die Ortskurve ist wiederum ein Kreis mit Radius 1, aber nun mit Mittelpunkt (0, –j). Es gilt auch hier $s_{TP}(t$ = 0) = 1 – j. Man bewegt sich nun auf der Ortskurve im Uhrzeigersinn. Die Periodendauer beträgt weiterhin $T_0$ = $1/f_{10}$ = 100 μs. Die Ortskurve ist gegenüber Punkt a) nur um 90° in der komplexen Ebene gedreht. Für alle Zeiten ergeben sich die gleichen Zeigerlängen wie für $f_T = f_{50}$. Der Betrag bleibt gleich. Die Phasenfunktion $\Phi(t)$ liefert nun Werte zwischen $–\pi$ und 0, während die in der Teilfrage 3) berechnete Phasenfunktion Werte zwischen $–pi/2$ und $+\pi /24$ angenommen hat. Es gilt:
$$\phi_d(t )= -(\phi_c(t) + 90^\circ).$$
Richtig sind somit der erste und der dritte Lösungsvorschlag.