Aufgabe 1.5Z: Ausfallwahrscheinlichkeiten
Aus LNTwww
Version vom 22. Februar 2017, 16:14 Uhr von Guenter (Diskussion | Beiträge)
Ein Geräteteil ist aus den Bauteilen $B_1, B_2, … , B_n$ aufgebaut, wobei die jeweilige Funktionsfähigkeit unabhängig von allen anderen Bauteilen angenommen werden kann.
- Das Teil $T_1$ funktioniert nur dann, wenn alle $n$ Bauteile funktionsfähig sind.
- Gehen Sie davon aus, dass alle Bauteile mit gleicher Wahrscheinlichkeit $p_{\rm A}$ ausfallen.
Zur Erhöhung der Zuverlässigkeit werden wichtige Baugruppen häufig dupliziert. Das Gerät $G$ kann somit mengentheoretisch wie folgt beschrieben werden:
$$ G = T_1 \cup T_2.$$
Das heißt: Das Gerät $G$ ist bereits dann einsatzbereit, wenn zumindest eines der beiden baugleichen Teilgeräte ($T_1$ oder $T_2$) funktionsfähig ist.
Hinweise:
- Die Aufgabe gehört zum Kapitel Statistische Abhängigkeit und Unabhängigkeit.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
Fragebogen
Musterlösung
- 1. Da die beiden Teilgeräte unabhängig voneinander ausfallen, gilt mengentheoretisch:
- $$\rm Pr(\it G \rm \hspace{0.1cm}f\ddot{a}llt\hspace{0.1cm}aus) = Pr(\it T_{\rm 1}\rm \hspace{0.1cm} f\ddot{a}llt \hspace{0.1cm}aus) \cdot Pr(\it T_{\rm 2}\rm \hspace{0.1cm} f\ddot{a}llt \hspace{0.1cm}aus). $$
- Da die Teilgeräte T1 und T2 baugleich sind, fallen sie mit der gleichen Wahrscheinlichkeit pT aus. Daraus folgt:
- $$\rm \it p_{\rm G} = \it p_{\rm T}^{\rm 2} \hspace{0.5cm} \rm bzw. \hspace{0.5cm} \rm \it p_{\rm T}= \sqrt{\it p_{\rm G}} \le \rm\sqrt{0.0004} \hspace{0.15cm}\underline {= 0.02}.$$
- 2. Dieses Ergebnis ist einfacher über das Komplementärereignis zu bestimmen:
- $$\rm Pr(\it T_{\rm 1}\hspace{0.1cm}\rm funktioniert) = \rm Pr(\it B_{\rm 1} \hspace{0.1cm}\rm funktioniert \cap \it B_{\rm 2} \hspace{0.1cm} \rm funktioniert \cap \it B_{\rm 3}\hspace{0.1cm} \rm funktioniert).$$
- $$\Rightarrow 1- p_{\rm T}= (1-p_{\rm A})^{3} \hspace{0.3cm}\rm \Rightarrow \hspace{0.3cm} 1-p_{\rm T}=(0.9)^3= 0.729 \hspace{0.3cm}\rm \Rightarrow \hspace{0.3cm} p_{\rm T}\hspace{0.15cm}\underline {= 0.271 = 27.1\%}.$$
- 3. Mit pA = 0.01 erhält man pT = 0.0297. Allgemein gilt die Näherung: pT ≈ n · pA (= 3%).
- 4. Mit der Näherung aus (c) folgt direkt n = 5. Bei größerem pA müsste man wie folgt vorgehen:
- $$0.996^{\it n}\ge 0.98 \hspace{0.5cm} \rm\Longrightarrow \hspace{0.5cm} \it n\le\rm\frac{log(0.98)}{log(0.996)} = 5.0406\hspace{0.15cm}\underline { \approx 5}.$$