Gesetzmäßigkeiten der Fouriertransformation (Lernvideo)
Teil 1
Ausgehend vom Gleichsignal $x_1(t) = A$ und der Spektralfunktion $X_1(f) = A \cdot \delta(f)$ werden durch sukzessives Anwenden der Gesetzmäßigkeiten der Fouriertransformation neue Zeitfunktionen $x_i(t)$ und zugehörige Spektren $X_i(f)$ abgeleitet. Im ersten Teil werden dabei die Anwendungen von Vertauschungssatz, Verschiebungssatz und Ähnlichkeitssatz verdeutlicht (Dauer 5:56).
Teil 2
Nun wird die Fourierreihendarstellung beispielhaft für das Dreiecksignal und das Rechtecksignal hergeleitet. Anhand von Simulationsergebnissen wird insbesondere der entstehende Fehler durch Abbruch der Fourierreihe angegeben. Abschließend wird das Gibbsche Phänomen am Beispiel des Rechtecksignals erläutert (Dauer 8:34).
Dieses Lernvideo wurde 2006 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Günter Söder und Klaus Eichin Sprecher: Günter Söder Realisierung: Franz Kohl und Manfred Jürgens .
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch Tasnád Kernetzky und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.