Aufgabe 2.1Z: ZSB-AM ohne/mit Träger
Die Grafik zeigt mit dem roten Kurvenverlauf einen Ausschnitt des Sendesignals$s(t) = q(t) · z(t)$ bei der Zweiseitenband–Amplitudenmodulation (abgekürzt mit ZSB-AM) ohne Träger. Die Dauer des Zeitausschnitts beträgt $200 μs$.
Zusätzlich sind das Quellensignal (als blau–gestrichelte Kurve) $$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N})$$ und das Trägersignal (grau–gepunkteter Verlauf) $$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})$$ in der nebenstehenden Grafik eingetragen.
Ab der Teilaufgabe d) wird die „ZSB–AM mit Träger” betrachtet. Dann gilt mit $A_T = 2 V$: $$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$
Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.1.
Fragebogen
Musterlösung
2.Aus der Grafik können für $q(t)$ und $z(t)$ die Periodendauern $200 μs$ bzw. $20 μs$ abgelesen werden. Daraus ergeben sich die Frequenzen zu $f_N = 5 kHz$ und $f_T = 50 kHz$.
3. Die Nullstellen von $z(t)$ bei $±5 μs$, $±15 μs$, $±25 μs$, usw. sind auch im Signal $s(t)$ vorhanden. Weitere Nullstellen von $s(t)$ - verursacht durch $q(t)$ – liegen bei $±50 μs$, $±150 μs$, $±250 μs$, usw.. Richtig sind somit die Aussagen 1 und 2. Die dritte Aussage trifft dagegen nicht zu, sondern es gilt:
$$ s(t) = a(t) \cdot \cos(\omega_{\rm T} t + \phi (t)) \hspace{0.05cm}.$$
Für $q(t) > 0$ ist die Phasenfunktion $ϕ(t) = 0$ und $s(t)$ ist gleichlaufend mit $z(t)$. Dagegen gilt für $q(t) < 0$: $ϕ(t) = π = 180°$. Bei den Nulldurchgängen von $q(t)$ weist das modulierte Signal $s(t)$ Phasensprünge auf.
4.Das Spektrum $S(f)$ ergibt sich aus der Faltung der Spektralfunktionen $Z(f)$ und $Q(f)$, die jeweils aus nur zwei Diracfunktionen bestehen. Die Grafik zeigt das Ergebnis.
Die rot eingezeichneten Diracfunktionen gelten nur für die „ZSB–AM mit Träger” und beziehen sich auf die Teilaufgabe f). Die Faltung der beiden $Z(f)$–Diracfunktionen bei $f_T = 50 kHz$ mit $Q(f)$ führt zu den Diraclinien bei $f_T – f_N$ und $f_T + f_N$, jeweils mit Gewicht 0.5 · 0.5 V = 0.25 V.
Die gesuchten Werte sind somit $f_1 = 45 kHz$ und $f_2 = 55 kHz$. Die mit zwei Markierungsstrichen versehene Diracfunktion $0.5 · δ(f + f_T)$ führt zu zwei weiteren Diraclinien bei $–f_1$ und $–f_2$.
5.Der Modulationsgrad berechnet sich zu:
$$ m = \frac{q_{\rm max}}{A_{\rm T}} = \frac{A_{\rm N}}{A_{\rm T}} \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
6.Gemäß der Skizze bei d) ergeben sich Diraclinien bei $±f_T$, beide mit dem Impulsgewicht $A_T/2 = 1 V$. Bei m ≤ 1 ist $q(t)$ in der Hüllkurve erkennbar und Hüllkurvendemodulation anwendbar. Allerdings muss diese einfachere Empfängervariante durch eine sehr viel größere Sendeleistung erkauft werden. In diesem Beispiel (m = 0.5) wird die Sendeleistung durch den Trägerzusatz verneunfacht. Richtig sind demzufolge die Lösungsvorschläge 1 und 3.