Aufgabe 2.1: ZSB-AM mit Cosinus? Oder mit Sinus?

Aus LNTwww
Wechseln zu:Navigation, Suche

Spektrum des analytischen Signals

Wir betrachten die Amplitudenmodulation des Quellensignals $q(t)$ mit dem Trägersignal $z(t)$. Diese Signale sind wie folgt gegeben:

$$q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N})\hspace{0.05cm},$$
$$z(t) = \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(2 \pi f_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$

Bekannt ist die Trägerfrequenz mit $f_{\rm T} = 40$ kHz. Die weiteren Systemparameter $A_{\rm N}$, $f_{\rm N}$, $ϕ_{\rm N}$ und $ϕ_{\rm T}$ sollen in dieser Aufgabe ermittelt werden.

Gegeben ist weiter das Spektrum $S_+(f)$ des analytischen Signals $s_+(t)$ am Ausgang des Modulators. Dieses lautet (siehe Grafik):

$$S_+(f) = {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{30} )+ {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{50} )\hspace{0.05cm}.$$

Hierbei sind die Abkürzungen $f_{30} = 30$ kHz und $f_{50} = 50$ kHz verwendet. Zur Erinnerung: Das Spektrum $S_+(f)$ erhält man aus $S(f)$, indem man die Anteile bei negativen Frequenzen abschneidet und bei positiven Frequenzen verdoppelt.


Hinweise:

$$\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\right] \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}- \hspace{0.05cm} \alpha) = \sin(\alpha) \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}+ \hspace{0.05cm} \alpha) = -\sin(\alpha) \hspace{0.05cm}.$$
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Ermitteln Sie das Spektrum $S(f)$. Welche der folgenden Aussagen sind richtig?

$S(f)$ besteht aus vier Diracfunktionen.
Alle Diracgewichte haben den gleichen Betrag $2$ V.
Alle Diracgewichte sind imaginär.

2

Wie lautet das modulierte Signal $s(t)$? Welche Aussage trifft zu?

Es handelt sich um ZSB–AM ohne Träger.
Es handelt sich um ZSB–AM mit Träger.

3

Geben Sie die Nachrichtenfrequenz $f_{\rm N}$ an.

$f_{\rm N} \ = \ $

$\ \text{kHz}$

4

Bestimmen Sie die Phasen von Quellen– und Trägersignal.

$ϕ_{\rm N} \ = \ $

$\ \text{Grad}$
$ϕ_{\rm T} \ = \ $

$\ \text{Grad}$

5

Wie groß ist die Amplitude des Nachrichtensignals?

$A_{\rm N} \ = \ $

$\ \text{V}$


Musterlösung

(1)  Richtig sind die Antworten 1 und 3:

  • Bei positiven Frequenzen erhält man $S_+(f)$ aus $S(f)$ durch Verdopplung.
  • Daraus folgt, dass die Impulsgewichte von $S(f)$ nur jeweils ${\rm j} · 1 $V sein können.
  • Aufgrund des Zuordnungssatzes muss $S(f)$ eine ungerade Funktion sein. Deshalb besitzt $S(f)$ noch zwei weitere Diracfunktionen bei $f = -f_{30}$ und $f = -f_{50}$, jeweils mit dem Gewicht $-{\rm j} · 1 $V:
$$S(f) = 1\,{\rm V} \cdot \left[ {\rm j}\cdot \delta ( f - f_{30} )-{\rm j} \cdot \delta ( f + f_{30} )+ {\rm j} \cdot \delta ( f - f_{50} )-{\rm j} \cdot \delta ( f + f_{50} )\right] \hspace{0.05cm}.$$

(2)  Die Fourierrücktransformation von $S(f)$ führt zu folgendem Signal (mit $ω_{30} = 2π · f_{30}$ und $ω_{50} = 2πf_{50}$):

$$ s(t) = -2\,{\rm V} \cdot \sin(\omega_{\rm 30} t )-2\,{\rm V} \cdot \sin(\omega_{\rm 50} t )\hspace{0.05cm}.$$

Dieser enthält keinen Anteil bei der Trägerfrequenz $f_{\rm T} = 40$ kHz, so dass die erste Aussage zutrifft.


(3)  Bei ZSB–AM ohne Träger beinhaltet $s(t)$ nur die beiden Frequenzen $f_{\rm T} – f_{\rm N}$ und $f_{\rm T} + f_{\rm N}$. Daraus folgt mit $f_{\rm T} = 40$ kHz für die Nachrichtenfrequenz:   $f_{\rm N} \hspace{0.05cm}\underline {= 10\ \rm kHz}.$


(4)  Bei ZSB–AM ohne Träger gilt:

$$s(t) = q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})$$
$$\Rightarrow \hspace{0.5cm} s(t) = \frac{A_{\rm N}}{2} \cdot \left[ \cos\left((\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N}\right) + \cos\left((\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N}\right) \right] \hspace{0.05cm}.$$

Ein Vergleich mit dem Ergebnis der Teilaufgabe (2) zeigt, dass gelten muss:

$$\cos(\omega_{\rm 30} \cdot t + \phi_{\rm T}- \phi_{\rm N}) = -\sin(\omega_{\rm 30} \cdot t )\hspace{0.05cm},$$
$$\cos(\omega_{\rm 50} \cdot t + \phi_{\rm T}+ \phi_{\rm N}) = -\sin(\omega_{\rm 50} \cdot t ) \hspace{0.05cm}.$$

Beide Gleichungen sind gleichzeitig nur mit der Phase $ϕ_{\rm N} \hspace{0.05cm}\underline {= 0}$ zu erfüllen. Aus der letzten angegebenen trigonometrischen Beziehung folgt außerdem $ϕ_{\rm T} \hspace{0.05cm}\underline {= 90^\circ} = π/2$.


(5)  Ein Vergleich der Ergebnisse aus (2) und (4) führt auf $A_{\rm N} \hspace{0.05cm}\underline {= 4 \ \rm V}$. Damit lauten die Gleichungen der an der Modulation beteiligten Signale:

$$q(t ) = 4\,{\rm V} \cdot \cos (2 \pi \cdot 10\,{\rm kHz} \cdot t) \hspace{0.05cm}, \hspace{1.0cm}z(t) = 1 \cdot \cos (2 \pi \cdot 40\,{\rm kHz} \cdot t + 90^{\circ}) = -\sin (2 \pi \cdot 40\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$