Aufgabe 4.7: Spektren von ASK und BPSK

Aus LNTwww
Wechseln zu:Navigation, Suche

Leistungsdichtespektren von $q(t)$ und $s(t)$ – gültig für ASK und BPSK

Die Sendesignale von ASK (Amplitude Shift Keying) und BPSK (Binary Phase Shift Keying) können beide in der Form $s(t) = q(t) · z(t)$ dargestellt werden, wobei $z(t)$ eine harmonische Schwingung mit der Frequenz $f_{\rm T}$ und der Amplitude $1$ darstellt. Die Trägerphase $ϕ_{\rm T}$ ist für die hier betrachteten Leistungsdichtespektren nicht von Bedeutung.

  • Die Quelle ist jeweils redundanzfrei, was bedeutet, dass die beiden möglichen Symbole $±1$ gleichwahrscheinlich sind und die Symbole statistisch voneinander unabhängig.
  • Bei ASK sind unipolare Amplitudenkoeffizienten – das heißt: $a_ν ∈ \{0, 1\}$ – des Quellensignals
$$ q(t) = \sum_{\nu = - \infty}^{+\infty}a_\nu \cdot g_q (t - \nu \cdot T)$$

anzusetzen, während im Fall der BPSK $a_ν ∈ \{-1, +1\}$ zu berücksichtigen ist.

In der Grafik sind die Leistungsdichtespektren ${\it Φ}_q(f)$ und ${\it Φ}_s(f)$ von Quellensignal und Sendesignal angegeben, die sich bei einem NRZ–Rechteckimpuls $g_q(t)$ mit der Amplitude $s_0 = 2 \ \rm V$ und der Dauer $T = 1 \ \rm μs$ ergeben. Damit lautet die Spektralfunktion:

$$G_q(f) = s_0 \cdot T \cdot {\rm si}(\pi f T)\hspace{0.05cm}.$$

Zu bestimmen sind die Konstanten $A$, $B$, $C$ und $D$ für die Modulationsverfahren ASK und BPSK.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Lineare digitale Modulation.
  • Bezug genommen wird aber auch auf das Kapitel Grundlagen der codierten Übertragung im Buch „Digitalsignalübertragung”.
  • Die Leistungen sind in $\rm V^2$ anzugeben; sie beziehen sich somit auf den Bezugswiderstand $R = 1 \ \rm \Omega$.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.

Fragebogen

1

Welche Werte ergeben sich bei ASK für die Parameter $A = {\it Φ}_q(f = 0)$ und $B$ (Diracgewicht bei $f = 0$)?

$A \ = \ $

$\ \cdot 10^{-6} \ \rm V^2$
$B \ = \ $

$\ \rm V^2$

2

Bestimmen Sie für das ASK–Sendesignal die Parameter $C = {\it Φ}_s(f = f_{\rm T})$ und $D$ (Diracgewicht bei $f = f_{\rm T}$) .

$C \ = \ $

$\ \cdot 10^{-6} \ \rm V^2$
$D \ = \ $

$\ \rm V^2$

3

Welche Werte ergeben sich bei BPSK für die Parameter $A$ und $B$?

$A \ = \ $

$\ \cdot 10^{-6} \ \rm V^2$
$B \ = \ $

$\ \rm V^2$

4

Welche Werte ergeben sich bei BPSK für die Parameter $C$ und $D$?

$C \ = \ $

$\ \cdot 10^{-6} \ \rm V^2$
$C \ = \ $

$\ \rm V^2$

5

Welche Aussagen treffen immer zu, also auch dann, wenn $g_q(t)$ kein NRZ–Rechteckimpuls ist?

Der kontinuierliche Anteil von $ {\it Φ}_q(f)$ ist formgleich mit $|Gq(f)|^2$.
${\it Φ}_q(f)$ beinhaltet bei ASK eine einzige Diraclinie (bei $f = 0$).
${\it Φ}_q(f)$ beinhaltet bei BPSK eine einzige Diraclinie (bei $f = 0$).


Musterlösung

1. Der Gleichanteil des unipolaren redundanzfreien Quellensignals beträgt $m_q = s_0/2$. Das Diracgewicht ist somit $B = m_q^2 = s_0^2/4 = 1 V^2$. Ohne diesen Gleichanteil ergibt sich das stochastische Rechtecksignal $q(t) – m_q$ ∈ {$+s_0/2, –s_0/2$}. Dieses gleichsignalfreie Signal besitzt den kontinuierlichen LDS–Anteil $(s_0/2)^2 · T · si^2(πfT)$, woraus der gesuchte Wert bei der Frequenz f = 0 ermittelt werden kann: '"`UNIQ-MathJax37-QINU`"' '''2.''' Das Spektrum Z(f) eines Cosinussignals z(t) besteht aus zwei Diracfunktionen bei ±fT, jeweils mit dem Gewicht 1/2. Das Leistungsdichtespektrum Φz(f) besteht ebenfalls aus den beiden Diracfunktionen, nun aber mit jeweiligem Gewicht 1/4. Die Faltung Φq(f) ∗ Φz(f) ergibt das Leistungsdichtespektrum $\Phi_s(f)$ des Sendesignals. Daraus folgt: $$C = \frac{A}{4} = 0.25 \cdot 10^{-6} V^2/Hz, D = \frac{B}{4} = 0.25 V^2$$


3.

4.

5.