Dämpfung von Kupferkabeln

Aus LNTwww
Wechseln zu:Navigation, Suche

Zeitfunktion und zugehörige Spektralfunktion

<applet>

Theoretischer Hintergrund

  • Der Zusammenhang zwischen Zeitfunktion $x(t)$ und dem Spektrum $X(f)$ ist durch die Fouriertransformation (FT) $$X(f)=\int_{-\infty}^{+\infty}x(t)\cdot e^{-j2\pi f t}\hspace{0.15cm} {\rm d}t$$ und deren Inversen (IFT) $$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot e^{j2\pi f t} \hspace{0.15cm} {\rm d}f$$ gegeben.
  • In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:

$$X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t$$ und $$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f.$$

  • $x(t)$ und $X(f)$ haben unterschiedliche Einheiten, z. B. $x(t)$ in V, $X(f)$ in V/Hz.
  • Alle Zeiten sind auf eine Normierungszeit $T$ und alle Frequenzen auf $1/T \Rightarrow$ das Spektrum $X(f)$ muss noch mit $T$ multipliziert werden.
  • Der Zusammenhang zwischen Impulse und deren Spektren und der ähnlich aufgebauten Animation „Tiefpass“ basiert auf dem Vertauschungssatz.