Aufgabe 1.1Z: Einfaches Pfadverlustmodell
Funkübertragung bei Sichtverbindung lässt sich durch das sog. Pfadverlustmodell beschreiben, das durch folgende Gleichungen gegeben ist:
- $$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm},$$
- $$V_{\rm 0} = \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$
Die Grafik zeigt den Pfadverlust $V_{\rm P}(d)$ in $dB$. Auch die Abszisse $d$ ist logarithmisch dargestellt. In obiger Gleichung sind verwendet:
- die Distanz $d$ von Sender und Empfänger,
- die Bezugsentfernung $d_0 = 1 \ \rm m$,
- der Pfadverlustexponent $\gamma$,
- die Wellenlänge $\lambda$ der elektromagnetischen Welle.
Gezeigt sind zwei Szenarien (A) und (B) mit gleichem Pfadverlust bei der Distanz $d_0 = 1 \ \rm m$:
- $$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB} \hspace{0.05cm}.$$
Eines dieser beiden Szenarien beschreibt die so genannte Freiraumdämpfung, charakterisiert durch den Pfadverlustexponenten $\gamma = 2$. Die Gleichung für die Freiraumdämpfung gilt allerdings nur im Fernfeld, also wenn der Abstand $d$ zwischen Sender und Empfänger größer ist als die „Fraunhofer–Distanz”
- $$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$
Hierbei ist $D$ die größte physikalische Abmessung der Sendeantenne. Bei einer $\lambda/2$–Antenne erhält man hierfür das einfache Ergebnis:
- $$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$
Hinweis:
- Die Aufgabe gehört zum Kapitel Distanzabhängige Dämpfung und Abschattung.
- Die Lichtgeschwindigkeit beträgt $c = 3 \cdot 10^8 \ {\rm m/s}$.
Fragebogen
Musterlösung
- $$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm}.$$
Beim Szenario (A) beträgt der Abfall pro Dekade (zum Beispiel zwischen $d_0 = 1 \ \rm m$ und $d = 10 \ \rm m$) genau $20 \ \rm dB$ und beim Szenario (B) $25 \ \rm dB$. Daraus folgt:
- $$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$
(2) Richtig ist Lösungsvorschlag 1, da die Freiraumdämpfung durch den Pfadverlustexponenten $\gamma = 2$ gekennzeichnet ist.
(3) Der Pfadverlust bei $d_0 = 1 \ \rm m$ ist in beiden Fällen $V_0 = 20 \ \rm dB$. Beim Szenario (A) gilt weiter:
- $$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1.257\,{\rm m} \hspace{0.05cm}.$$
Die Frequenz $f_{\rm A}$ hängt mit der Wellenlänge $\lambda_{\rm A}$ über die Lichtgeschwindigkeit $c$ zusammen:
- $$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz} \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}} \hspace{0.05cm}.$$
Dagegen gilt für das Szenario (B):
- $$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$
- $$\Rightarrow \hspace{0.3cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}$$
- $$\Rightarrow \hspace{0.3cm} {f_{\rm B}} = \frac{6.31}{10} \cdot {f_{\rm A}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline{\approx 151.4 \,\,{\rm MHz}} \hspace{0.05cm}.$$
(4) Richtig ist der \underline {erste Lösungsvorschlag}. Beim Freiraum–Szenario (A) beträgt die Fraunhofer–Distanz $d_{\rm F} = \lambda_{\rm A}/2 \approx 63 \ \rm cm$. Es gilt also stets $d > d_{\rm F}$. Auch beim Szenario (B) ist wegen $\lambda_{\rm B} \approx 2 \ \rm m$ bzw. $d_{\rm F} \approx 1 \ \rm m$ der gesamte dargestellte Verlauf richtig.