Aufgabe 3.13: Vergleich SWE - DFE - ML

Aus LNTwww
Wechseln zu:Navigation, Suche

Fehlerwahrscheinlichkeiten im Vergleich:
SE:    Schwellenwertentscheidung,
DFE: Decision Feedback Equalization,
ML:    Maximum–Likelihood–Detektion

Es sollen Fehlerwahrscheinlichkeiten verschiedener Empfängertypen miteinander verglichen werden. Betrachtet werden im Einzelnen:

  • Schwellenwertentscheidung (SE)   ⇒   Fehlerwahrscheinlichkeit $p_{\rm SE}$,
  • Decision Feedback Equalization (DFE)   ⇒   Fehlerwahrscheinlichkeit $p_{\rm DFE}$ und
  • Maximum–Likelihood–Detektion (ML)   ⇒   Fehlerwahrscheinlichkeit $p_{\rm ML}$.


Der „Hauptwert” $g_0$, der Vorläufer $g_{\rm –1}$ und der Nachläufer $g_1$ des Detektionsgrundimpulses sowie der Detektionsstöreffektivwert vor dem jeweiligen Entscheider ($\sigma_d$) sind für vier verschiedene Parametersätze $\rm A$, $\rm B$, $\rm C$ und $\rm D$ in der Tabelle angegeben.

Ausgegangen wird von bipolaren Amplitudenkoeffizienten, so dass zum Beispiel für die ungünstigste Fehlerwahrscheinlichkeit des Empfängers mit einfachem Schwellenwertenentscheider gilt:

$$p_{\rm U,\hspace{0.05cm} SE } = \left\{ \begin{array}{c} {\rm Q}\big [ ({g_0-|g_{-1}|-|g_{1}|})/{\sigma_d} \big ]\\ \\{\rm Q}(0) = 0.5 \end{array} \right.\quad \begin{array}{*{1}c} {\rm bei }\hspace{0.15cm}{\rm ge\ddot{o}ffnetem }\hspace{0.15cm}{\rm Auge }, \\ \\{\rm bei }\hspace{0.15cm}{\rm geschlossenem }\hspace{0.15cm}{\rm Auge }. \\ \end{array}\begin{array}{*{20}c} \\ \end{array}$$

Beim Nyquistsystem $\rm A$ ist die mittlere Fehlerwahrscheinlichkeit genau so groß, nämlich

$$p_{\rm SE } =p_{\rm U,\hspace{0.05cm} SE } = {\rm Q}\left( {g_0}/{\sigma_d} \right)= {\rm Q}(5) \approx 2.87 \cdot 10^{-7}\hspace{0.05cm}.$$

Bei den anderen hier betrachteten Systemvarianten $\rm B$, $\rm C$ und $\rm D$ sind die Impulsinterferenzen so stark und der vorgegebene Störeffektivwert so klein, dass die folgende Näherung angewendet werden kann:

$$p_{\rm SE } \approx {1}/{4} \cdot p_{\rm U,\hspace{0.05cm} SE } = {1}/{4} \cdot {\rm Q}\left( \frac {{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|-|g_{1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$

Mit Ausnahme des Nyquistsystems $\rm A$ (hier ist $p_{\rm DFE} = p_{\rm SE}$) gilt für den DFE–Empfänger statt dessen folgende Näherung:

$$p_{\rm DFE } \approx {1}/{2} \cdot p_{\rm U,\hspace{0.05cm} DFE } = {1}/{2} \cdot {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$

Dagegen wurde auf der letzten Theorieseite zu diesem Kapitel gezeigt, dass für einen Empfänger mit ML–Entscheidung die folgende Näherung zutrifft:

$$p_{\rm ML } = {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[g_{\nu}]}{\sigma_d} \right)\hspace{0.05cm}.$$


Hinweise:

  • Die Aufgabe gehört zum Kapitel Viterbi–Empfänger.
  • Bezug genommen wird auch auf die Kapitel Lineare Nyquistentzerrung und Entscheidungsrückkopplung.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Die Zahlenwerte der Q–Funktion können Sie mit dem Interaktionsmodul Komplementäre Gaußsche Fehlerfunktionen ermitteln.
  • Um den im Theorieteil angegebenen Algorithmus für zwei Vorläufer anwenden zu können, müssten Sie folgende Umbenennungen vornehmen (was jedoch für die Berechnung der Fehlerwahrscheinlichkeiten keine Bedeutung hat):
$$g_{1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{0 },\hspace{0.4cm} g_{0 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-1 },\hspace{0.4cm} g_{-1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-2 } \hspace{0.05cm}.$$


Fragebogen

1

Welche Fehlerwahrscheinlichkeit ergibt sich bei System A mit Maximum–Likelihood–Detektion (ML)?

$\text{System A:} \hspace{0.4cm} p_{\rm ML} \ = \ $

$\ \cdot 10^{\rm –7} $

2

Welche Fehlerwahrscheinlichkeiten sind bei System B zu erwarten?

$\text{System B:} \hspace{0.55cm} p_{\rm SE} \ = \ $

$\ \% $
$\text{System B:} \hspace{0.3cm} p_{\rm DFE} \ = \ $

$\ \% $
$\text{System B:} \hspace{0.5cm} p_{\rm ML} \ = \ $

$\ \% $

3

Welche Fehlerwahrscheinlichkeiten ergeben sich bei System C?

$\text{System C:} \hspace{0.55cm} p_{\rm SE} \ = \ $

$\ \% $
$\text{System C:} \hspace{0.3cm} p_{\rm DFE} \ = \ $

$\ \% $
$\text{System C:} \hspace{0.45cm} p_{\rm ML} \ = \ $

$\ \% $

4

Welche Fehlerwahrscheinlichkeiten sind bei System D zu erwarten?

$\text{System D:} \hspace{0.55cm} p_{\rm SE} \ = \ $

$\ \% $
$\text{System D:} \hspace{0.3cm} p_{\rm DFE} \ = \ $

$\ \% $
$\text{System D:} \hspace{0.45cm} p_{\rm ML} \ = \ $

$\ \% $


Musterlösung

(1)  Ohne Impulsinterferenzen bringen der DFE– und der ML–Empfänger keine Verbesserung gegenüber der einfachen Schwellenwertentscheidung:

$$ p_{\rm DFE } = p_{\rm ML } = p_{\rm SE } \hspace{0.15cm}\underline {\approx 2.87 \cdot 10^{-7}} \hspace{0.05cm}.$$


(2)  Mit $g_0 = 0.6$, $g_{\rm –1} = 0.1$ und $g_1 = 0.3$ erhält man näherungsweise:

$$p_{\rm SE } \ \approx \ {1}/{4} \cdot {\rm Q}\left( \frac{0.6-0.1-0.3}{0.2} \right)= {1}/{4} \cdot{\rm Q}(1) \hspace{0.15cm}\underline {\approx 0.04 \hspace{0.05cm}},$$
$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.6-0.1}{0.2} \right)= {1}/{2} \cdot {\rm Q}(2.5) \hspace{0.15cm}\underline {\approx 3.1 \cdot 10^{-3}} \hspace{0.05cm},$$
$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.6}{0.2} \right) = {\rm Q}(3) \hspace{0.15cm}\underline {\approx 1.35 \cdot 10^{-3}} \hspace{0.05cm}.$$


(3)  Die Fehlerwahrscheinlichkeiten lauten mit $g_0 = 0.4$ und $g_1 = g_{\rm –1} = 0.3$:

$$p_{\rm SE } \ \approx \ {1}/{4} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 0.125} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm geschlossenes }\hspace{0.15cm}{\rm Auge } \hspace{0.05cm},$$
$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.4-0.3}{0.2} \right)= {1}/{2} \cdot {\rm Q}(0.5) \hspace{0.15cm}\underline {\approx 0.15 \hspace{0.05cm}},$$
$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.4}{0.2} \right) = {\rm Q}(2) \hspace{0.15cm}\underline {\approx 0.0227} \hspace{0.05cm}.$$

Interessant – und nicht etwa ein Rechenfehler – ist, dass die DFE schlechter ist als der herkömmliche Schwellenwertentscheider, wenn die Fehlerwahrscheinlichkeit $10\%$ oder mehr beträgt (siehe dazu auch die Musterlösung zur Teilaufgabe (4)).


(4)  Nun ergibt sich auch für den DFE–Empfänger ein geschlossenes Auge. Die Fehlerwahrscheinlichkeit $p_{\rm DFE}$ ist größer als $p_{\rm SE}$, da nun die ungünstigste Symbolfolge häufiger auftritt. Nach der angegebenen einfachen Näherung gilt:

$$p_{\rm SE } = {1}/{4} \cdot{\rm Q}(0) = 0.125\hspace{0.05cm}, \hspace{0.2cm} p_{\rm DFE } = {1}/{2} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 0.250} \hspace{0.05cm}.$$

Bei exakter Rechnung erhält man dagegen:

$$p_{\rm SE } \ = \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3-0.4-0.3}{0.2}\right) + {1}/{4} \cdot{\rm Q}\left( \frac{0.3-0.4+0.3}{0.2}\right)+$$
$$ \ + \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3+0.4-0.3}{0.2}\right) +{1}/{4} \cdot{\rm Q}\left( \frac{0.3+0.4+0.3}{0.2}\right)= $$
$$ \ = \ {1}/{4} \cdot \left[ {\rm Q}(-2) + {\rm Q}(1) +{\rm Q}(2) +{\rm Q}(5) \right] ={1}/{4} \cdot \left[ 1+ {\rm Q}(1) +{\rm Q}(5) \right] \hspace{0.05cm}.$$

Wegen ${\rm Q}(–2) + {\rm Q}(2) = 1$ und ${\rm Q}(5) \approx 0$ erhält man daraus $p_{\rm SE} \approx 25.5\%$.

Entsprechend gilt für den DFE–Empfänger:

$$p_{\rm DFE } \ = \ {1}/{2} \cdot {\rm Q}\left( \frac{0.3-0.4}{0.2}\right) + {1}/{2} \cdot{\rm Q}\left( \frac{0.3+0.4}{0.2}\right)=$$
$$\ = \ {1}/{2} \cdot \left[ {\rm Q}(-0.5) + {\rm Q}(3.5) \right] \approx\frac{1- {\rm Q}(0.5)}{2}\hspace{0.15cm}\underline {= 0.35} \hspace{0.05cm}.$$

Dagegen beträgt die Fehlerwahrscheinlichkeit $p_{\rm ML}$ eines Maximum–Likelihood–Empfängers weiterhin ${\rm Q}(2) \hspace{0.15cm} \underline {= 2.27\%}$. Die Reihenfolge der Detektionsgrundimpulswerte ist für die Fehlerwahrscheinlichkeit des Viterbi–Empfängers (nahezu) nicht von Bedeutung.