Aufgabe 1.10Z: Gauß-Bandpass

Aus LNTwww
Wechseln zu:Navigation, Suche

Gaußförmiger Bandpasskanal

Bei trägerfrequenzmodulierter Übertragung muss der Kanalfrequenzgang $H_{\rm K}(f)$ stets als Bandpass angesetzt werden. Die Kanalparameter sind zum Beispiel die Mittenfrequenz $f_{\rm M}$ und die Bandbreite $\Delta f_{\rm K}$, wobei die Mittenfrequenz $f_{\rm M}$ oft mit der Trägerfrequenz $f_{\rm T}$ übereinstimmt. In dieser Aufgabe soll insbesondere von einem Gaußbandpass mit dem Frequenzgang

$$H_{\rm K}(f) = {\rm exp} \left [ - \pi \cdot \left ( \frac {f - f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ] +{\rm exp} \left [ - \pi \cdot \left ( \frac {f + f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]$$

entsprechend der Grafik ausgegangen werden:

  • Zur Modulation wird binäre Phasenmodulation (BPSK) verwendet.
  • Die Demodulation erfolgt frequenz– und phasensynchron.


Zur Beschreibung benutzt man oft den äquivalenten TP–Frequenzgang $H_{\rm K,TP}(f)$. Dieser ergibt sich aus $H_{\rm K}(f)$ durch

  • Abschneiden der Anteile bei negativen Frequenzen,
  • Verschieben des Spektrums um $f_{\rm T}$ nach links.


Im betrachteten Beispiel ergibt sich mit $f_{\rm T} = f_{\rm M}$ für den äquivalenten TP–Frequenzgang:

$$ H_{\rm K,\hspace{0.04cm} TP}(f) = {\rm exp} \left [ - \pi \cdot \left ( {f }/{\Delta f_{\rm K}}\right )^2 \right ].$$

Die entsprechende Zeitfunktion (Fouruerrücktransformierte) lautet:

$$ h_{\rm K,\hspace{0.04cm} TP}(t) = \Delta f_{\rm K} \cdot {\rm exp} \left [ - \pi \cdot \left ( {\Delta f_{\rm K}} \cdot t \right )^2 \right ].$$

Zur Beschreibung eines phasensynchronen BPSK–Systems im Tiefpassbereich eignet sich aber auch der Frequenzgang

$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] ,$$

wobei „MKD” für Modulator – Kanal – Demodulator steht. Häufig – aber nicht immer – sind $H_{\rm MKD}(f)$ und $H_{\rm K,TP}(f)$ identisch.

Hinweis:

Die Aufgabe bezieht sich auf die letzte Theorieseite von Lineare digitale Modulation – Kohärente Demodulation

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)