Aufgabe 4.15: Optimale Signalraumbelegung
Betrachtet wird hier eine Signalraumkonstellation mit $M = 8$ Signalraumpunkten:
- Vier Punkte liegen auf einem Kreis mit Radius $r = 1$.
- Vier weitere Punkte liegen um $45^°$ versetzt auf einem zweiten Kreis mit Radius $R$, wobei gelten soll:
- $$R_{\rm min} \le R \le R_{\rm max}\hspace{0.05cm},\hspace{0.2cm} R_{\rm min}= \frac{ \sqrt{3}-1}{ \sqrt{2}} \approx 0.518 \hspace{0.05cm},$$
- $$R_{\rm max}= \frac{ \sqrt{3}+1}{ \sqrt{2}} \approx 1.932\hspace{0.05cm}.$$
Die beiden Achsen (Basisfunktionen) seien jeweils normiert und werden vereinfachend mit $I$ und $Q$ bezeichnet. Zur weiteren Vereinfachung kann $E = 1$ gesetzt werden.
Im Fragebogen wird von blauen und roten Punkten gesprochen. Entsprechend der Grafik liegen die blauen Punkte auf dem Kreis mit Radius $r = 1$, die roten auf dem Kreis mit Radius $R$. Gezeichnet ist der Fall $R = R_{\rm max}$.
Der Systemparameter $R$ soll in dieser Aufgabe so bestimmt werden, dass der Quotient
- $$\eta = \frac{ (d_{\rm min}/2)^2}{ E_{\rm B}} $$
maximal wird. $\eta$ ist ein Maß für die Güte eines Modulationsalphabets bei gegebener Sendeenergie pro Bit (Power Efficiency). Es berechnet sich aus
- der minimalen Distanz $d_{\rm min}$, und
- der Bitenergie $E_{\rm B}$.
Es ist darauf zu achten, dass $d_{\rm min}^2$ und $E_{\rm B}$ in gleicher Weise normiert sind, was aber bereits durch die Aufgabenstellung implizit gegeben ist.
Hinweis:
- Die Aufgabe bezieht sich auf die Seite 6 und die Seite 7 des Kapitels Trägerfrequenzsysteme mit kohärenter Demodulation.
Fragebogen
Musterlösung