Aufgabe 2.11Z: Erasure–Kanal für Symbole

Aus LNTwww
Wechseln zu:Navigation, Suche

Auslöschungskanal für Symbole: $m$–BEC

Das Kanalmodell Binary Erasure Channel (BEC) beschreibt einen Auslöschungskanal auf Bitebene. Ein Binärsymbol $0$ bzw. $1$ wird mit der Wahrscheinlichkeit $1 - \lambda$ richtig übertragen und mit der Wahrscheinlichkeit $\lambda$ als Auslöschung $\rm E$ (Erasure) markiert. Im Gegensatz zum BSC kann es hier nicht zu Verfälschungen $(0 → 1, \ 1 → 0)$ kommen.

Ein Reed–Solomon–Code basiert auf einem Galoisfeld ${\rm GF}(2^m)$ mit ganzzahligem $m$. Jedes Codesymbol $c$ lässt sich somit durch $m \ \rm Bit$ darstellen. Will man hier das BEC–Modell anwenden, so muss man dieses zum m–BEC–Modell modifizieren, wie es in der unteren Grafik für $m = 2$ gezeigt ist:

Alle Codesymbole – in binärer Darstellung $00, \ 01, \ 10$ und $11$ – werden mit der Wahrscheinlichkeit $1 - \lambda_2$ richtig übertragen. Damit beträgt die Wahrscheinlichkeit für ein ausgelöschtes Symbol $\lambda_2$. Zu beachten ist, dass bereits ein einziges ausgelöschtes Bit zum ausgelöschten Empfangssymbol $y = \rm E$ führt.

Hinweise:

  • Die Aufgabe gehört zum Kapitel Reed–Solomon–Decodierung beim Auslöschungskanal.
  • Bei einem auf ${\rm GF}(2^m)$ basierenden Code ist das skizzierte 2–BEC–Modell zum $m$–BEC zu erweitern. Die Auslöschungswahrscheinlichkeit dieses Modell wird dann mit $\lambda_m$ bezeichnet.
  • Für die Teilaufgaben (1), (2) und (3) gelte für die Auslöschungswahrscheinlichkeit des Grundmodells gemäß der oberen Grafik stets $\lambda = 0.2$.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Es gelte $\lambda = 0.2$. Mit welchen Wahrscheinlichkeiten treten beim BEC–Modell die möglichen Empfangswerte auf?

$1–{\rm BEC} \text{:} \hspace{0.2cm} {\rm Pr}(y = 0) \ = \ $

$\hspace{1.2cm} {\rm Pr}(y = {\rm E}) \ = \ $

$\hspace{1.2cm} {\rm Pr}(y = {\rm 1}) \ = \ $

2

Wie groß ist die Auslöschungswahrscheinlichkeit $\lambda_2$ auf Symbolebene, wenn der Reed–Solomon–Code auf $\rm GF(2^2)$ basiert $(\lambda = 0.2)$?

$2–{\rm BEC} \text{:} \hspace{0.2cm} \lambda_2 \ = \ $

3

Wie groß ist die Auslöschungswahrscheinlichkeit $\lambda_m$, wenn das $m$–BEC–Modell an den $\rm RSC \, (255, \, 223, \, 33)_{256}$ angepasst wird $(\lambda = 0.2)$?

$m–{\rm BEC} \text{:} \hspace{0.2cm} \lambda_m \ = \ $

4

Wie groß darf die Auslöschungswahrscheinlichkeit $\lambda$ beim Grundmodell (BEC) maximal sein, damit $\lambda_m ≤ 0.2$ gilt?

$\lambda_m ≤ 0.2 \text{:} \hspace{0.2cm} {\rm Max}[\lambda] \ = \ $

5

Mit welcher Wahrscheinlichkeit wird damit das „Nullsymbol” empfange?

$\lambda_m = 0.2 \text{:} \hspace{0.2cm} {\rm Pr}(y_{\rm bin} = 00000000) \ = \ $


Musterlösung

(1)  Aufgrund der Symmetrie des vorgegebenen BEC–Modells (Auslöschungskanal auf Bitebene) gilt für die Erasure–Wahrscheinlichkeit: $\ {\rm Pr}(y = {\rm E}) = \lambda \ \underline{= 0.2}$. Da die Codesymbole $0$ und $1$ gleichwahrscheinlich sind, erhält man für deren Wahrscheinlichkeiten ${\rm Pr}(y = 0) \ \underline{= 0.4}$ und ${\rm Pr}(y = 1) \ \underline{= 0.4}$.


(2)  Ohne Einschränkung der Allgemeingültigkeit gehen wir zur Lösung dieser Aufgabe vom Codesymbol $c_{\rm binär} = $ „$00$” aus. Entsprechend dem 2–BEC–Modell kann dann das Empfangssymbol $y_{\rm binär}$ entweder „$00$” oder ausgelöscht $(\rm E)$ sein und es gilt:

$${\rm Pr}(y_{\rm bin} = "00"\hspace{0.05cm} |\hspace{0.05cm} c_{\rm bin} = "00") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( 1 - \lambda)^2 = 0.8^2 = 0.64 = 1 - \lambda_2$$
$$\Rightarrow \hspace{0.3cm} \lambda_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - ( 1 - \lambda)^2 \hspace{0.15cm}\underline{= 0.36}\hspace{0.05cm}. $$

Es ist vorausgesetzt, dass ein Erasure nur vermieden wird, wenn keines der zwei Bit ausgelöscht wurde.


(3)  Der $\rm RSC \, (255, \, 223, \, 33)_{256}$ basiert auf dem Galoisfeld $\rm GF(256) = GF(2^8) \ \Rightarrow \ \it m = \rm 8$. Das Ergebnis der Teilaufgabe (2) muss nun an diesen Fall angepasst werden. Für den $8$–BEC gilt:

$$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 0.832}\hspace{0.05cm}. $$


(4)  Aus der Bedingung $\lambda_m ≤ 0.2$ folgt direkt $1 - \lambda_m ≥ 0.8$. Daraus folgt weiter:

$$( 1 - \lambda)^8 \ge 0.8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 1 - \lambda \ge 0.8^{0.125} \approx 0.9725 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\lambda \hspace{0.15cm} \underline{\le 0.0275}\hspace{0.05cm}.$$


(5)  Mit $\lambda = 0.0275 \ \Rightarrow \ \lambda_m = 0.2$ sind $20\%$ der Empfangssymbole Erasures. Die anderen $2^8 = 256$ Empfangssymbole „$00000000$” $...$ „$11111111$” sind alle gleichwahrscheinlich. Daraus folgt:

$${\rm Pr}(y_{\rm bin} = "00000000") = \hspace{0.05cm}... \hspace{0.05cm}= {\rm Pr}(y_{\rm bin} = "11111111" )= \frac{0.8}{256} \hspace{0.15cm}\underline{= 0.003125}\hspace{0.05cm}.$$