Aufgabe 2.15Z: Nochmals RS-Blockfehlerwahrscheinlichkeit
Bei Verwendung eines Reed–Solomon–Codes mit der Korrekturfähigkeit $t$ und Bounded Distance Decoding (BDD) erhält man mit
- der Codewortlänge $n$ und
- der Symbolverfälschungswahrscheinlichkeit $\epsilon_{\rm S}$
für die Blockfehlerwahrscheinlichkeit:
- $${\rm Pr(Blockfehler)} = \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
In dieser Aufgabe soll die Blockfehlerwahrscheinlichkeit für den $\rm RSC \, (7, \, 3, \, 5)_8$ und verschiedene $\epsilon_{\rm S}$–Werte berechnet und angenähert werden. Obige Gleichung erinnert an die Biomialverteilung. Die Grafik zeigt die Wahrscheinlichkeiten der Binomialverteilung für die Parameter $n = 7$ (Codewortlänge) und $\epsilon_{\rm S} = 0.25$ (Symbolverfälschungswahrscheinlichkeit).
Hinweise:
- Die Aufgabe gehört zum Kapitel Fehlerwahrscheinlichkeit und Anwendungsgebiete.
- Zur Kontrolle können Sie das interaktive Applet Gegenüberestellung von Binomialverteilung vs. Poissonverteilung benutzen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{f = 3}^{7} {7 \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{7-f} =$$
- $$\hspace{2.875cm} \ = \ \hspace{-0.15cm} {7 \choose 3} \cdot 0.1^3 \cdot 0.9^4 + {7 \choose 4} \cdot 0.1^4 \cdot 0.9^3 + {7 \choose 5} \cdot 0.1^5 \cdot 0.9^2+$$
- $$ \hspace{2.875cm} \ + \ \hspace{-0.15cm} {7 \choose 6} \cdot 0.1^6 \cdot 0.9+ {7 \choose 7} \cdot 0.1^7 \hspace{0.05cm}.$$
Nach dieser Berechnung müssten fünf Terme berücksichtigt werden. Da aber auch
- $${\rm Pr(Blockfehler)} = \sum_{f = 0}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} = 1$$
gilt, kommt man über den nachfolgenden Rechenweg schneller zum Erfolg:
- $${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - \big [ {7 \choose 0} \cdot 0.9^7 + {7 \choose 1} \cdot 0.1 \cdot 0.9^6 + {7 \choose 2} \cdot 0.1^2 \cdot 0.9^5 \big ] =$$
- $$\hspace{2.875cm} \ = \ \hspace{-0.15cm}1 - \big [ 0.4783 + 0.3720 + 0.1240 \big ] \hspace{0.15cm} \underline{= 0.0257} \hspace{0.05cm}.$$
(2) Analog zur Teilaufgabe erhält man hier:
- $${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - \big [ 0.99^7 + 7 \cdot 0.01 \cdot 0.99^6 + 21 \cdot 0.01^2 \cdot 0.99^5 \big ] =$$
- $$\hspace{2.875cm} \ = \ \hspace{-0.15cm}1 - \big [ 0.9321 + 0.0659 + 0.0020 \big ] \approx 0 \hspace{0.05cm}.$$
Das bedeutet: Für die Wahrscheinlichkeit $\epsilon_{\rm S} = 0.01$ ist die vereinfachte Rechnung sehr fehleranfällig, weil sich für den Klammerausdruck ein Wert nahezu $1$ ergibt. Die vollständige Rechnung ergibt hier:
- $${\rm Pr(Blockfehler)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 3} \cdot 0.01^3 \cdot 0.99^4 + {7 \choose 4} \cdot 0.01^4 \cdot 0.99^3 + {7 \choose 5} \cdot 0.01^5 \cdot 0.99^2+$$
- $$\hspace{2.875cm} \ = \ \hspace{-0.15cm} {7 \choose 6} \cdot 0.01^6 \cdot 0.99+ {7 \choose 7} \cdot 0.01^7 =$$
- $$\hspace{2.875cm} \ = \ \hspace{-0.15cm} 10^{-6} \cdot \big [ 33.6209 + 0.3396 + 0.0021 + ... \big ] \hspace{0.15cm} \underline{ \approx 3.396 \cdot 10^{-5}} \hspace{0.05cm}.$$
(3) Aus der Musterlösung zur Teilaufgabe (2) kann das Ergebnis direkt abgelesen werden:
- $${\rm Pr(Blockfehler)} \hspace{0.15cm} \underline{ \approx 3.362 \cdot 10^{-5}} \hspace{0.05cm}.$$
Der relative Fehler beträgt ca. $-1\%$. Das Minuszeichen zeigt an, dass es sich hier nur um eine Näherung handelt und nicht um eine Schranke: Der Näherungswert ist etwas kleiner als der tatsächliche Wert.
(4) Beschränkt man sich auf den relevanten Term $(f = 3)$, so ergibt sich für $\epsilon_{\rm S} = 0.001$:
- $${\rm Pr(Blockfehler)} \approx {7 \choose 3} \cdot [10^{-3}]^3 \cdot 0.999^4 \hspace{0.15cm} \underline{ \approx 3.49 \cdot 10^{-8}} \hspace{0.05cm}.$$
Der relative Fehler beträgt hier nur noch etwa $-0.1\%$.
(5) Entsprechend der hergeleiteten Näherung gilt für den betrachteten Code:
- $${\rm Pr(Blockfehler)} \approx {7 \choose 3} \cdot {\varepsilon_{\rm S}}^3 = 35 \cdot {\varepsilon_{\rm S}}^3$$
- $$\Rightarrow \hspace{0.3cm} {\rm Pr(Blockfehler)} = 10^{-10}: \hspace{0.4cm} {\varepsilon_{\rm S}} = \big ( \frac{10^{-10}}{35} \big )^{1/3} = 2.857^{1/3} \cdot 10^{-4} \hspace{0.15cm} \underline{ \approx 1.42 \cdot 10^{-4}}\hspace{0.05cm}.$$