Aufgabe 1.2Z: Bitfehlermessung
Die Bitfehlerwahrscheinlichkeit
- $$p_{\rm B} = {1}/{2} \cdot{\rm erfc} \left( \sqrt{{E_{\rm B}}/{N_0}}\right)$$
eines Binärsystems wurde durch eine Messung der Bitfehlerquote (BER)
- $$h_{\rm B} = {n_{\rm B}}/{N}$$
simulativ ermittelt. Oftmals wird $h_{\rm B}$ auch Bitfehlerhäufigkeit genannt.
In obigen Gleichungen bedeuten:
- $E_{\rm B}$: Energie pro Bit,
- $N_0$: AWGN–Rauschleistungsdichte,
- $n_{\rm B}$: Anzahl der aufgetretenen Bitfehler,
- $N$: Anzahl der simulierten Bit einer Versuchsreihe.
Die Tabelle zeigt die Ergebnisse einiger Versuchsreihen mit $N = 6.4 \cdot 10^4 $, $N = 1. 28 \cdot 10^5$ und $N = 1.6 \cdot 10^6$. Die letzte mit $N \to \infty $ benannte Spalte gibt die Bitfehlerwahrscheinlichkeit $p_{\rm B}$ an.
Im Fragebogen zur Aufgabe wird auf folgende Eigenschaften Bezug genommen:
- Die Bitfehlerhäufigkeit $h_{\rm B}$ ist in erster Näherung eine gaußverteilte Zufallsgröße mit Mittelwert $m_h = p_{\rm B}$ und Varianz $\sigma_h^2 \approx p_{\rm B}$.
- Die relative Abweichung der Bitfehlerhäufigkeit von der Wahrscheinlichkeit beträgt
- $$\varepsilon_{\rm rel}= \frac {h_{\rm B}-p_{\rm B}}{p_{\rm B}}\hspace{0.05cm}.$$
- Als eine grobe Faustregel zur erforderlichen Genauigkeit gilt, dass die Anzahl der gemessenen Bitfehler $n_{\rm B} \ge 100$ sein sollte.
Hinweis:
- Die Aufgabe gehört zum Kapitel Fehlerwahrscheinlichkeit bei Basisbandübertragung.
Fragebogen
Musterlösung
- Natürlich wird die Genauigkeit der BER–Messung durch den Parameter $N$ in starkem Maße beeinflusst. Im statistischen Mittel wird die BER–Messung natürlich besser, wenn man $N$ erhöht.
- Es besteht jedoch kein deterministischer Zusammenhang zwischen der Anzahl der simulierten Bit und der Genauigkeit der BER–Messung, wie z. B. die Ergebnisse für $10 \cdot \lg \ E_{\rm B}/N_0 = 6 \ \rm dB$ zeigen:
- Bei $N = 6.4 \cdot 10^4\ (n_{\rm B} = 0.258 \cdot 10^{-2})$ ist die Abweichung vom tatsächlichen Wert $(0.239 \cdot 10^{-2})$ geringer als bei $N = 1.28 \cdot 10^5\ (n_{\rm B} = 0.272 \cdot 10^{-2})$.
(2) Bei $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$, also $E_{\rm B} = N_0$, erhält man folgende Werte:
- $$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1 \cdot10^{-3}}\hspace{0.05cm},$$
- $$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{1600000}}\hspace{0.1cm}\underline {\approx 0.22 \cdot10^{-3}}\hspace{0.05cm}.$$
(3) Hierfür ergeben sich mit $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$ folgende Werte:
- $$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}} = \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}$$
- $$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.0782-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.5\% } \hspace{0.05cm}.$$
(4) Aufgrund der kleineren Fehlerwahrscheinlichkeit ergeben sich nun kleinere Werte als in der Teilaufgabe (2):
- $$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx 2.3 \cdot 10^{-5}}\hspace{0.05cm},$$
- $$ N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{1.6 \cdot 10^{6}}}\hspace{0.1cm}\underline {\approx 0.46 \cdot10^{-5}}\hspace{0.05cm}.$$
(5) Trotz der deutlich kleineren Streuung $\sigma_h$ ergeben sich für $10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$ aufgrund der kleineren Fehlerwahrscheinlichkeit größere relative Abweichungen als für $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$:
- $$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.625 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline { \approx 86\% } \hspace{0.05cm},$$
- $$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.325 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline {\approx -3.3\%}\hspace{0.05cm}.$$
(6) Die Anzahl der gemessenen Bitfehler sollte $n_{\rm B} \ge 100$ sein. Deshalb gilt näherungsweise (Rundungsfehler sind zu berücksichtigen):
- $$n_{\rm B} = {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.$$
- Daraus folgt weiter, dass bei der Simulation für $10 \cdot \lg \ E_{\rm B}/N_0\hspace{0.05cm}\underline{ = 8 \ \rm dB}$ noch ausreichend viele Bitfehler aufgetreten sind $(n_{\rm B} =315)$, während für $10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$ im Mittel nur mehr $n_{\rm B} =52$ Fehler zu erwarten sind.
- Für diesen dB–Wert müsste etwa die doppelte Anzahl an Bits simuliert werden.