Aufgabe 3.9: Kennlinie für Cosinus-WDF
Gesucht ist eine stetige, monoton steigende nichtlineare Kennlinie $y =g(x)$, die aus einer zwischen $-1$ und $+1$ gleichverteilten Zufallsgröße $x$ eine neue Zufallsgröße $y$ mit „cosinusförmiger” WDF generiert:
- $$f_y(y)=A\cdot\cos({\pi}/{2}\cdot y).$$
- Die Zufallsgröße $y$ kann ebenfalls nur Werte zwischen $-1$ und $+1$ annehmen.
- Die beiden Dichtefunktionen $f_x(x)$ und $f_y(y)$ sind nebenstehend skizziert.
Hinweise:
- Die Aufgabe gehört zum Kapitel Exponentialverteilte Zufallsgrößen.
- Insbesondere wird Bezug genommen auf die Seite Transformation von Zufallsgrößen.
Fragebogen
Musterlösung
- Da $x$ nur Werte zwischen $\pm 1$ annehmen kann, ist der Verlauf der Kennlinie außerhalb dieses Bereichs für die Zufallsgröße $y$ ohne Belang.
- Die Bedingung $g(-x) = g(x)$ muss nicht eingehalten werden. Es gibt beliebig viele Kennlinien, die die gewünschte WDF erzeugen können.
- Die unter Punkt (5) berechnete Kennlinie ist beispielsweise punktsymmetrisch: $g(-x) = -g(x)$.
- Schon die grafischen Darstellungen der beiden Dichtefunktionen zeigen, dass $\sigma_y^2 < \sigma_x^2$ ist.
(2) Das Integral über die WDF muss stets gleich $1$ sein. Daraus folgt:
- $$\int_{-\rm 1}^{\rm 1}A\cdot \cos({\pi}/{\rm 2}\cdot y)\, {\rm d} y=\frac{A\cdot \rm 4}{\pi}\hspace{0.3cm} \Rightarrow\hspace{0.3cm} A=\frac{\pi}{\rm 4} \hspace{0.15cm}\underline{= \rm 0.785}.$$
(3) Die Transformationsformel kann wie folgt umgeformt werden:
- $$f_y(y)=\frac{f_x(x)}{| g'(x)|}\Big|_{\, x=h(y)}=f_x(x)\cdot |h'(y)| \Big|_{\, x=h(y)}.$$
Die Umkehrfunktion $x = h(y)$ einer monoton ansteigenden Kennlinie $y = g(x)$ steigt ebenfalls monoton an.
Deshalb kann auf die Betragsbildung verzichtet werden und man erhält:
- $$h\hspace{0.05cm}'(y)=\frac{f_y(y)}{f_x(x)\Big|_{\, x=h(y)}}={\pi}/{\rm 2}\cdot \cos({\pi}/{2}\cdot y).$$
An der Stelle $y = 0$ hat die Steigung den Wert $h'(y= 0)=π/2\hspace{0.15cm}\underline{\approx 1.571}$.
(4) Man erhält durch (unbestimmte) Integration:
- $$h(y)=\int h'(y)\, {\rm d} y + C = \frac{\pi}{2}\cdot \frac{2}{\pi}\cdot \sin(\frac{\pi}{ 2}\cdot y) + C.$$
Die Nebenbedingung $h(y= 0) = 0$ führt zur Konstanten $C = 0$ und damit zum Ergebnis:
- $$h(y) = \sin({\pi}/{2}\cdot y) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} h(y = 1) \hspace{0.15cm}\underline{= 1}.$$
(5) Die Umkehrfunktion der in der Teilaufgabe (4) ermittelten Funktion $x = h(y)$ lautet:
- $$y=g(x)={\rm 2}/{\rm \pi}\cdot \rm arcsin({\it x}).$$
- Diese Kennlinie steigt im Bereich $-1 \le x \le +1$ von $y = -1$ bis $y = +1$ monoton an.
- Der gesuchte Wert ist also $g(x= 1) \hspace{0.15cm}\underline{= +1}$.