Aufgabe 2.11: Arithmetische Codierung
Die arithmetische Codierung ist eine spezielle Form der Entropiecodierung: Die Symbolwahrscheinlichkeiten müssen auch hier bekannt sein. In dieser Aufgabe gehen wir von $M = 3$ Symbolen aus, die wir mit $\rm X$, $\rm Y$ und $\rm Z$ benennen.
Während die Huffman–Codierung symbolweise erfolgt, wird bei der Arithmetischen Codierung $(\rm AC)$ eine Symbolfolge der Länge $N$ gemeinsam codiert. Das Codierergebnis ist ein reeller Zahlenwert $r$ aus dem Intervall
- $$I = \big[B, \ E \big) = \big[B, \ B +{\it \Delta} \big)\hspace{0.05cm}.$$
Diese Notation bedeutet:
- Der Beginn $B$ gehört zum Intervall $I$.
- Das Ende $E$ ist nicht mehr in $I$ enthalten.
- Die Intervallbreite ist ${\it} \Delta = E - B$.
Von den unendlich vielen möglichen Werten $r \in I$ $($da $r$ reellwertig ist, also kein Integer$)$ wird derjenige Zahlenwert ausgewählt, der mit der geringsten Bitanzahl auskommt. Hierzu zwei Beispiele zur Verdeutlichung:
- Der Dezimalwert $r = 3/4$ lässt sich mit zwei Bit darstellen:
- $$r = 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = 0.75 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\text{binär:}\hspace{0.25cm} 0.11\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\text {Code:} \hspace{0.25cm} \boldsymbol{\rm 11} \hspace{0.05cm}, $$
- Der Dezimalwert $r = 1/3$ benötigt dagegen unendlich viele Bit:
- $$r = 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3}+ 1 \cdot 2^{-4}+ 0 \cdot 2^{-5} + 1 \cdot 2^{-6} + \hspace{0.05cm}\text{...}$$
- $$ \Rightarrow\hspace{0.3cm}\text{binär:} \hspace{0.25cm}0.011101\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \text{Code:} \hspace{0.25cm} \boldsymbol{\rm 011101} \hspace{0.05cm}. $$
In dieser Aufgabe beschränken wir uns auf die Bestimmung des aktuellen Intervalls $I$, gekennzeichnet durch den Beginn $B$ sowie dem Ende $E$ bzw. der Breite $\Delta$.
- Diese Bestimmung geschieht entsprechend der Intervallschachtelung in obiger Grafik.
- An der Schraffierung ist zu erkennen, dass die Folge mit den Ternärsymbolen $\rm XXY$ beginnt.
Der Algorithmus funktioniert wie folgt:
- Vor Beginn (quasi beim nullten Symbol) wird der gesamte Wahrscheinlichkeitsbereich nach den Wahrscheinlichkeiten $p_{\rm X}$, $p_{\rm Y}$ und $p_{\rm Z}$ in drei Bereiche unterteilt. Die Grenzen liegen bei
- $$B_0 = 0\hspace{0.05cm},\hspace{0.4cm}C_0 = p_{\rm X}\hspace{0.05cm},\hspace{0.4cm}D_0 = p_{\rm X} + p_{\rm Y}\hspace{0.05cm},\hspace{0.4cm} E_0 = p_{\rm X} + p_{\rm Y}+ p_{\rm Z} = 1\hspace{0.05cm}.$$
- Das erste Symbol der zu codierenden Folge ist $\rm X$. Das bedeutet: das ausgewählte Intervall wird durch $B_0$ und $C_0$ begrenzt. Dieses Intervall wird mit neuem Beginn $B_1 = B_0$ und neuem Ende $E_1 = C_0$ in gleicher Weise aufgeteilt wie der Gesamtbereich im nullten Schritt. Die Zwischenwerte sind $C_1$ und $D_1$.
- Die weitere Intervall–Aufteilung ist Ihre Aufgabe. Beispielsweise sollen in der Teilaufgabe (2) die Grenzen $B_2$, $C_2$, $D_2$ und $E_2$ für das zweite Symbol $\rm X$ ermittelt werden und in der Teilaufgabe (3) die Grenzen $B_3$, $C_3$, $D_3$ und $E_3$ für das dritte Symbol $\rm Y$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Weitere Quellencodierverfahren.
- Insbesondere wird Bezug genommen auf die Seite Arithmetische Codierung.
- Die Binärdarstellung des ausgewählten Intervalls wird in der Aufgabe 2.11Z behandelt.
Fragebogen
Musterlösung
(1) Aus der Grafik auf der Angabenseite kann man die Wahrscheinlichkeiten ablesen:
- $$p_{\rm X} = 0.7\hspace{0.05cm},\hspace{0.2cm}p_{\rm Y} = 0.1\hspace{0.05cm},\hspace{0.2cm}p_{\rm Z} = 0.2\hspace{0.05cm}.$$
(2) Auch das zweite Symbol ist $\rm X$. Bei gleichem Vorgehen wie in der Aufgabenbeschreibung erhält man
- $$B_2 \hspace{0.1cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}C_2 = 0.49 \cdot 0.7 \hspace{0.1cm}\underline{= 0.343}\hspace{0.05cm},\hspace{0.2cm} D_2 \hspace{0.1cm} \underline{= 0.392}\hspace{0.05cm},\hspace{0.2cm}E_2 = C_1 \hspace{0.1cm}\underline{= 0.49} \hspace{0.05cm}.$$
(3) Für das dritte Symbol $\rm Y$ gelten nun die Begrenzungen $B_3 = C_2$ und $E_3 = D_2$:
- $$B_3 \hspace{0.1cm}\underline{= 0.343}\hspace{0.05cm},\hspace{0.2cm}C_3 \hspace{0.1cm}\underline{= 0.3773}\hspace{0.05cm},\hspace{0.2cm} D_3 \hspace{0.1cm} \underline{= 0.3822}\hspace{0.05cm},\hspace{0.2cm}E_3 \hspace{0.1cm}\underline{= 0.392} \hspace{0.05cm}.$$
(4) Richtig ist der Lösungsvorschlag 1: Aus $B_4 = 0.343 = B_3$ (abzulesen in der Grafik auf dem Angabenblatt) folgt zwingend, dass das vierte Quellensymbol ein $\rm X$ war.
(5) Richtig sind die Lösungsvorschläge 2 und 3:
- Die Grafik zeigt die Intervallschachtelung mit allen bisherigen Ergebnissen. Man erkennt aus der Schraffierung, dass der zweite Lösungsvorschlag die richtige Symbolfolge angibt: $\rm XXYXXXZ$.
- Die Intervallbreite $\it \Delta$ kann wirklich gemäß dem Vorschlag 3 ermittelt werden. Es gilt:
- $${\it \Delta} = 0.359807 - 0.3564456 = 0.003614 \hspace{0.05cm},$$
- $${\it \Delta} =p_{\rm X}^5 \cdot p_{\rm Y} \cdot p_{\rm Z} = 0.7^5 \cdot 0.1 \cdot 0.2 = 0.003614 \hspace{0.05cm}. $$
(6) Richtig ist der Lösungsvorschlag 2 ⇒ $r_2 = (0.010111)_{\text{binär}}$, wegen:
- $$r_2 = 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3}+ 1 \cdot 2^{-4}+ 1 \cdot 2^{-5} + 1 \cdot 2^{-6} = 0.359375\hspace{0.05cm}. $$
- Der Vorschlag 1: $r_1 = (0.101100)_{\text{binär}}$ ist auszuschließen, da der zugehörige Dezimalwert $r_1 > 0.5$ ist.
- Auch der letzte Lösungsvorschlag ist falsch, da $r_3 = (0.001011)_{\text{binär}} < (0.01)_{\text{binär}} = (0.25)_{\text{dezimal}}$ sein wird.