Aufgabe 4.16: Vergleich zwischen binärer PSK und binärer FSK
Die Grafik zeigt die Bitfehlerwahrscheinlichkeit für die binäre FSK–Modulation $\rm (BFSK)$ bei
im Vergleich zur binären Phasenmodulation $\rm (BPSK)$.
Es wird stets Orthogonalität vorausgesetzt. Bei kohärenter Demodulation kann hierbei der Modulationsindex ein Vielfaches von $h = 0.5$ sein, so dass die mittlere Kurve auch für Minimum Shift Keying $\rm (MSK)$ gültig ist. Dagegen muss bei nichtkohärenter Demodulation der BFSK der Modulationsindex ein Vielfaches von $h = 1$ sein.
Diesem Systemvergleich liegt wieder der AWGN–Kanal zugrunde, gekennzeichnet durch das Verhältnis $E_{\rm B}/N_0$. Die Gleichungen für die Bitfehlerwahrscheinlichkeiten lauten bei
- Binary Phase Shift Keying $\rm (BPSK)$:
- $$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
- Binary Frequency Shift Keying $\rm (BFSK)$ mit kohärenter Demodulation:
- $$p_{\rm B} = {\rm Q}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/(2 N_0 )} \hspace{0.1cm}\right ),$$
- Binary Frequency Shift Keying $\rm (BFSK)$ mit inkohärenter Demodulation:
- $$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$
In Aufgabe 4.8 wurde gezeigt, dass bei der BPSK das logarithmierte Verhältnis $10 · \lg \ E_{\rm B}/N_0$ mindestens $9.6 \ \rm dB$ betragen muss, damit die Bitfehlerwahrscheinlichkeit den Wert $p_{\rm B} = 10^{–5}$ nicht übersteigt.
Hinweise:
- Die Aufgabe gehört zum Kapitel Nichtlineare digitale Modulation.
- Bezug genommen wird aber auch auf das Kapitel Lineare digitale Modulation.
- Verwenden Sie die Näherung $\lg(2) ≈ 0.3$.
Fragebogen
Musterlösung
In anderen Worten: Die kohärente BFSK–Kurve liegt um $10 · \lg (2) ≈ 3 \ \rm dB$ rechts von der BPSK–Kurve. Um $p_{\rm B} \le 10^{–5}$ zu garantieren, muss daher gelten:
- $$10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}} /{N_{\rm 0}}= 9.6\,\,{\rm dB} + 3\,\,{\rm dB} = \underline{12.6\,\,{\rm dB}}\hspace{0.05cm}.$$
(2) Richtig ist der Lösungsvorschlag 2:
- Die angegebene Gleichung gilt nicht nur für die MSK (diese ist eine FSK mit $h = 0.5$), sondern für jede Form von orthogonaler FSK.
- Eine solche liegt vor, wenn der Modulationsindex $h$ ein ganzzahliges Vielfaches von $0.5$ ist, zum Beispiel für $h = 1$.
- Mit $h = 0.7$ ergibt sich keine orthogonale FSK. Es kann aber gezeigt werden, dass sich für $h = 0.7$ sogar eine kleinere Bitfehlerwahrscheinlichkeit als bei orthogonaler FSK ergibt.
- Mit $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$ erreicht man hier sogar $p_{\rm B} ≈ 10^{–6}$, also eine Verbesserung um eine Zehnerpotenz.
(3) Aus der Umkehrfunktion der angegebenen Gleichung erhält man:
- $$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{E_{\rm B}} /{N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}}/ {N_{\rm 0}}\approx \underline{13.4\,\,{\rm dB}}\hspace{0.05cm}.$$
(4) Aus $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$ folgt:
- $${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} ({E_{\rm B}} /{N_{\rm 0}})/2 \approx 8.4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4} \approx \underline{1.12 \cdot 10^{-4}}\hspace{0.05cm}.$$
Das heißt: Bei gleichem $E_{\rm B}/N_0$ wird die Fehlerwahrscheinlichkeit bei inkohärenter Demodulation gegenüber kohärenter Demodulation (siehe Teilaufgabe 1) um etwa den Faktor 11 vergrößert.