Stochastische Systemtheorie
Inhaltsverzeichnis
- 1 # ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL #
- 2 Systemmodell und Problemstellung
- 3 Amplituden- und Leistungsdichtespektrum
- 4 Leistungsdichtespektrum des Filterausgangssignals
- 5 Autokorrelationsfunktion des Filterausgangssignals
- 6 Kreuzkorrelationsfunktion zwischen Eingangs- und Ausgangssignal
- 7 Aufgaben zum Kapitel
# ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL #
Dieses Kapitel beschreibt den Einfluss eines Filters auf die »Autokorrelationsfunktion« $\rm (AKF)$ und das »Leistungsdichtespektrum« $\rm (LDS)$ stochastischer Signale.
Im Einzelnen werden behandelt:
- die »Berechnung von AKF und LDS« am Filterausgang ("Stochastische Systemtheorie"),
- die Struktur und die Darstellung »Digitaler Filter« (nichrekursiv und rekursiv),
- die »Dimensionierung der Filterkoeffizienten« für eine vorgegebene AKF,
- die Bedeutung des »Matched-Filters« für die SNR-Maximierung von Nachrichtensystemen,
- die Eigenschaften des »Wiener-Kolmogorow-Filters« zur Signalrekonstruktion.
Weitere Informationen zum Thema „Filterung stochastischer Signale” sowie Aufgaben, Simulationen und Programmierübungen finden Sie im
- Kapitel 10: Filterung stochastischer Signale (Programm fil)
- Kapitel 11: Optimale Filter (Programm ofi)
des Praktikums „Simulationsmethoden in der Nachrichtentechnik”. Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
- dem Lehrsoftwarepaket LNTsim ⇒ Link verweist auf die ZIP-Version des Programms, und
- der Praktikumsanleitung - Teil B ⇒ Link verweist auf die PDF-Version mit Kapitel 10: Seite 229-248 und Kapitel 11: Seite 249-270.
Systemmodell und Problemstellung
Wir betrachten wie im Buch Lineare zeitinvariante Systeme die rechts skizzierte Anordnung, wobei das System
- sowohl durch die Impulsantwort $h(t)$
- als auch durch seinen Frequenzgang $H(f)$
eindeutig beschrieben ist. Der Zusammenhang zwischen diesen Beschreibungsgrößen im Zeit– und Frequenzbereich ist durch die Fouriertransformation gegeben.
Legt man an den Eingang das Signal $x(t)$ an und bezeichnet das Ausgangssignal mit $y(t)$, so liefert die klassische Systemtheorie folgende Aussagen:
- Das Ausgangssignal $y(t)$ ergibt sich aus der Faltung zwischen dem Eingangssignal $x(t)$ und der Impulsantwort $h(t)$. Die folgende Gleichung gilt für deterministische und stochastische Signale gleichermaßen:
- $$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
- Bei deterministischen Signalen geht man meist den Umweg über die Spektralfunktionen. Das Spektrum $X(f)$ ist die Fouriertransformierte von $x(t)$. Die Multiplikation mit dem Frequenzgang $H(f)$ führt zum Ausgangsspektrum $Y(f)$. Daraus lässt sich das Signal $y(t)$ durch Fourierrücktransformation gewinnen.
- Bei stochastischen Signalen versagt diese Vorgehensweise, da dann die Zeitfunktionen $x(t)$ und $y(t)$ nicht für alle Zeiten von $–∞$ bis $+∞$ vorhersagbar sind und die dazugehörigen Amplitudenspektren $X(f)$ und $Y(f)$ gar nicht existieren. In diesem Fall muss auf die Leistungsdichtespektren übergegangen werden.
Amplituden- und Leistungsdichtespektrum
Wir betrachten einen ergodischen Zufallsprozess $\{x(t)\}$, dessen Autokorrelationsfunktion $φ_x(τ)$ als bekannt vorausgesetzt wird. Das Leistungsdichtespektrum ${\it Φ}_x(f)$ ist dann über die Fouriertransformation ebenfalls eindeutig bestimmt und es gelten die folgenden Aussagen:
- Das Leistungsdichtespektren ${\it Φ}_x(f)$ kann – ebenso wie die Autokorrelationsfunktion $φ_x(τ)$ – für jede einzelne Musterfunktion des stationären und ergodischen Zufallsprozesses $\{x(t)\}$ angegeben werden, auch wenn der spezifische Verlauf von $x(t)$ explizit nicht bekannt ist.
- Das Amplitudenspektrum $X(f)$ ist dagegen undefiniert, da bei Kenntnis der Spektralfunktion $X(f)$ auch die gesamte Zeitfunktion $x(t)$ von $–∞$ bis $+∞$ über die Fourierrücktransformation bekannt sein müsste, was bei einem stochastischen Signal eindeutig nicht der Fall sein kann.
- Ist entsprechend der nebenstehenden Skizze ein Zeitausschnitt der endlichen Zeitdauer $T_{\rm M}$ bekannt, so kann für diesen natürlich wieder die Fouriertransformation angewendet werden.
$\text{Satz:}$ Zwischen dem Leistungsdichtespektrum ${\it Φ}_x(f)$ des zeitlich unendlich ausgedehnten Zufallssignals $x(t)$ und dem Amplitudenspektrum $X_{\rm T}(f)$ des begrenzten Zeitausschnittes $x_{\rm T}(t)$ besteht der folgende Zusammenhang:
- $${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert ^2.$$
$\text{Beweis:}$ Vorne wurde die Autokorrelationsfunktion eines ergodischen Prozesses mit der Musterfunktion $x(t)$ wie folgt angegeben:
- $${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
- Es ist zulässig, die zeitlich unbegrenzte Funktion $x(t)$ durch die auf den Zeitbereich $-T_{\rm M}/2$ bis $+T_{\rm M}/2$ begrenzte Funktion $x_{\rm T}(t)$ zu ersetzen. $x_{\rm T}(t)$ korrespondiert mit dem Spektrum $X_{\rm T}(f)$, und man erhält durch Anwendung des ersten Fourierintegrals und des Verschiebungssatzes:
- $${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm T}(t)\cdot \int^{+\infty}_{-\infty}X_{\rm T}(f)\cdot {\rm e}^{ {\rm j}2 \pi f ( t + \tau) } \hspace{0.1cm} \rm d \it f \hspace{0.1cm} \rm d \it t.$$
- Nach Aufspalten des Exponenten und Vertauschen von Zeit- und Frequenzintegral ergibt sich:
- $${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+\infty}_{-\infty}X_{\rm T}(f)\cdot \left[ \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm T}(t)\cdot {\rm e}^{ {\rm j}2 \pi f t } \hspace{0.1cm} \rm d \it t \right] \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f.$$
- Das innere Integral beschreibt das konjugiert–komplexe Spektrum $X_{\rm T}^{\star}(f)$. Daraus folgt weiter:
- $${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+\infty}_{-\infty}\vert X_{\rm T}(f)\vert^2 \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f.$$
- $${ {\it \varphi}_x(\tau)} = \int^{+\infty}_{-\infty}{\it \Phi}_x(f) \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f ,$$
- zeigt die Gültigkeit der oben genannten Beziehung:
- $${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert^2.$$
Leistungsdichtespektrum des Filterausgangssignals
Kombiniert man die in den beiden letzten Abschnitten gemachten Aussagen, so kommt man zu folgendem wichtigen Ergebnis:
$\text{Satz:}$ Das Leistungsdichtespektrum (LDS) am Ausgang eines linearen zeitinvarianten Systems mit dem Frequenzgang $H(f)$ ergibt sich als das Produkt
- aus dem Eingangs–LDS ${\it Φ}_x(f)$ und
- der „Leistungsübertragungsfunktion” $\vert H(f)\vert ^2$:
- $${ {\it \Phi}_y(f)} = { {\it \Phi}_x(f)} \cdot \vert H(f)\vert ^2.$$
$\text{Beweis:}$ Ausgegangen wird von den drei bereits vorher hergeleiteten Beziehungen:
- $${ {\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm} \frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm} \vert X_{\rm T}(f)\vert^2,$$
- $$ { {\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm} \frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm}\vert Y_{\rm T}(f)\vert^2, $$
- $$Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$
Setzt man diese Gleichungen ineinander ein, so erhält man das obige Ergebnis.
Das folgende Beispiel verdeutlicht den Zusammenhang bei Weißem Rauschen.
$\text{Beispiel 1:}$ Am Eingang eines Gauß-Tiefpasses mit dem Frequenzgang
- $$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
liegt weißes Rauschen $x(t)$ mit der Rauschleistungsdichte ${ {\it \Phi}_x(f)} =N_0/2$ an ⇒ zweiseitige Darstellung. Dann gilt für das Leistungsdichtespektrum des Ausgangssignals:
- $${ {\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}.$$
Die Grafik zeigt die Signale und Leistungsdichtespektren am Filtereingang und –ausgang.
Anmerkungen:
- Das Signal $x(t)$ kann – streng genommen – nicht gezeichnet werden, da es eine unendlich große Leistung besitzt ⇒ Integral über ${\it Φ}_x(f)$ von $-\infty$ bis $+\infty$.
- Das Ausgangssignal $y(t)$ ist niederfrequenter als $x(t)$ und besitzt eine endliche Leistung entsprechend dem Integral über ${\it Φ}_y(f)$.
- Bei einseitiger Darstellung würde (nur) für $f>0$ gelten: ${ {\it \Phi}_x(f)} =N_0$. Die Aussagen (1) und (2) würden auch hier in gleicher Weise gelten.
Autokorrelationsfunktion des Filterausgangssignals
Das berechnete Leistungsdichtespektrum $\rm (LDS)$ kann auch wie folgt geschrieben werden:
- $${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f)$$
$\text{Satz:}$ Für die Autokorrelationsfunktion $\rm (AKF)$ erhält man nach den Gesetzmäßigkeiten der Fouriertransformation und durch Anwendung des Faltungssatzes:
- $${ {\it \varphi}_y(\tau)} = { {\it \varphi}_x(\tau)} \ast h(\tau)\ast h(- \tau).$$
Beim Übergang vom Spektral– in den Zeitbereich ist zu beachten:
- Einzusetzen sind jeweils die Fourierrücktransformierten, nämlich
- $${{\it \varphi}_y(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.5cm}{{\it \varphi}_x(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.5cm}{h(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.5cm}{h(-\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}$$
- Zudem wird aus jeder Multiplikation eine Faltungsoperation.
$\text{Beispiel 2:}$ Wir betrachten nochmals das gleiche Szenario wie im $\text{Beispiel 1}$, aber diesmal im Zeitbereich. Es gilt auch hier:
- Zweiseitiges weißes Rauschen ${ {\it \Phi}_x(f)} =N_0/2$,
- gaußförmiges Filter: $H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} h(t) = \Delta f \cdot {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(\Delta f \hspace{0.03cm}\cdot \hspace{0.03cm}t)^2}.$
Man erkennt aus dieser Darstellung:
- Die AKF des Eingangssignals ist nun eine Diracfunktion mit dem Gewicht $N_0/2$.
- Durch zweimalige Faltung mit der (hier ebenfalls gaußförmigen) Impulsantwort $h(t)$ bzw. $h(–t)$ erhält man die AKF $φ_y(τ)$ des Ausgangssignals.
- Auch die AKF $φ_y(τ)$ des Ausgangssignals ist also gaußförmig.
- Der AKF–Wert bei $τ = 0$ ist gleich der Fläche des Leistungsdichtespektrums ${\it Φ}_y(f)$ und kennzeichnet die Signalleistung (Varianz) $σ_y^2$.
- Dagegen ergibt die Fläche unter $φ_y(τ)$ den LDS-Wert ${\it Φ}_y(f = \rm 0)$, also $N_0/2$.
Kreuzkorrelationsfunktion zwischen Eingangs- und Ausgangssignal
Wir betrachten wieder ein Filter mit dem Frequenzgang $H(f)$ und der Impulsantwort $h(t)$. Weiter gilt:
- Das stochastische Eingangssignal $x(t)$ ist eine Musterfunktion des ergodischen Zufallsprozesses $\{x(t)\}$.
- Die zugehörige Autokorrelationsfunktion $\rm (AKF)$ am Filtereingang ist somit $φ_x(τ)$, während das Leistungsdichtespektrum $\rm (LDS)$ mit ${\it Φ}_x(f)$ bezeichnet wird.
- Die entsprechenden Beschreibungsgrößen des ergodischen Zufallsprozesses $\{y(t)\}$ am Filterausgang sind
- die Musterfunktion $y(t)$,
- die Autokorrelationsfunktion $φ_y(τ)$ sowie
- das Leitsungsdichtespektrum ${\it Φ}_y(f)$.
$\text{Satz:}$ Für die Kreuzkorrelationsfunktion $\rm (KKF)$ zwischen dem Eingangs– und dem Ausgangssignal gilt:
- $${ {\it \varphi}_{xy}(\tau)} = h(\tau)\ast { {\it \varphi}_x(\tau)} .$$
Hierbei bezeichnet $h(τ)$ die Impulsantwort des Filters $($mit der Zeitvariablen $τ$ anstelle von $t)$ und ${ {\it \varphi}_{x}(\tau)}$ die AKF des Eingangssignals.
$\text{Beweis:}$ Allgemein gilt für die Kreuzkorrelationsfunktion zwischen zwei Signalen $x(t)$ und $y(t)$:
- $${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot y(t + \tau)\hspace{0.1cm} \rm d \it t.$$
- Mit der allgemeingültigen Beziehung $y(t) = h(t) \ast x(t)$ und der formalen Integrationsvariablen $θ$ lässt sich hierfür auch schreiben:
- $${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot \int^{+\infty}_{-\infty} h(\theta) \cdot x(t + \tau - \theta)\hspace{0.1cm}{\rm d}\theta\hspace{0.1cm}{\rm d} \it t.$$
- Durch Vertauschen der beiden Integrale und Hereinziehen der Grenzwertbildung in das Integral erhält man:
- $${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty} h(\theta) \cdot \left[ \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} } \cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot x(t + \tau - \theta)\hspace{0.1cm} \hspace{0.1cm} {\rm d} t \right]{\rm d}\theta.$$
- Der Ausdruck in den eckigen Klammern ergibt den AKF-Wert am Eingang zum Zeitpunkt $τ - θ$:
- $${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}h(\theta) \cdot \varphi_x(\tau - \theta)\hspace{0.1cm}\hspace{0.1cm} {\rm d}\theta = h(\tau)\ast { {\it \varphi}_x(\tau)} .$$
- Das verbleibende Integral beschreibt aber die Faltungsoperation in ausführlicher Schreibweise.
$\text{Fazit:}$ Im Frequenzbereich lautet die entsprechende Gleichung:
- $${ {\it \Phi}_{xy}(f)} = H(f)\cdot{ {\it \Phi}_x(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f) = \frac{ {\it \Phi}_{xy}(f)}{ {\it \Phi}_{x}(f)}.$$
Diese Gleichung zeigt, dass der Filterfrequenzgang $H(f)$ aus einer Messung mit stochastischer Anregung vollständig – also sowohl der Betrag als auch die Phase – berechnet werden kann, wenn folgende Beschreibungsgrößen ermittelt werden:
- die statistischen Kenngrößen am Eingang, entweder die AKF $φ_x(τ)$ oder das LDS ${\it Φ}_x(f)$,
- sowie die Kreuzkorrelationsfunktion $φ_{xy}(τ)$ bzw. deren Fouriertransformierte ${\it Φ}_{xy}(f)$.
Aufgaben zum Kapitel
Aufgabe 5.1: Gaußsche AKF und Gaußtiefpass
Aufgabe 5.1Z: $\cos^2$-Rauschbegrenzung
Aufgabe 5.2: Bestimmung des Frequenzgangs