Momente einer diskreten Zufallsgröße
Berechnung als Schar- bzw. Zeitmittelwert
Die Wahrscheinlichkeiten bzw. die relativen Häufigkeiten liefern weitreichende Informationen über eine diskrete Zufallsgröße. Reduzierte Informationen erhält man durch die so genannten Momente $m_k$, wobei $k$ eine natürliche Zahl darstellt.
Unter der hier stillschweigend vorausgesetzten Ergodizität gibt es für das Moment $k$-ter Ordnung zwei unterschiedliche Berechnungsmöglichkeiten:
- die Scharmittelung bzw. Erwartungswertbildung (Mittelung über alle möglichen Werte):
$$m_k = \rm E \it [z^k] = \sum_{\mu = \rm 1}^{\it M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E[...]:} \hspace{0.1cm} \rm Erwartungswert ,$$
- die Zeitmittelung über die Zufallsfolge 〈 $z_ν$〉 mit der Laufvariablen $ν =$ 1 , ... , $N$:
$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie:\hspace{0.1cm}Zeitmittelwert.$$
Beide Berechnungsarten führen für genügend große Werte von $N$ zum gleichen asymptotischen Ergebnis. Bei endlichem $N$ ergibt sich ein vergleichbarer Fehler, als wenn die Wahrscheinlichkeit durch die relative Häufigkeit angenähert wird.