Aufgabe 1.1: Einfache Filterfunktionen
A1.1 Einfache Filterfunktionen
Man bezeichnet ein Filter mit dem Frequenzgang $$H_{\rm TP}(f) = \frac{1}{1+ {\rm j}\cdot f/f_0}$$ als Tiefpass erster Ordnung. Daraus lässt sich ein Hochpass erster Ordnung nach folgender Vorschrift gestalten: $$H_{\rm HP}(f) = 1- H_{\rm TP}(f) .$$
In beiden Fällen gibt $f_0$ die so genannte 3dB–Grenzfrequenz an.
Die Abbildung zeigt zwei Vierpole A und B. In der Aufgabe ist zu klären, welcher der beiden Vierpole eine Tiefpass– und welcher eine Hochpasscharakteristik aufweist.
Die Bauelemente von Schaltung A sind wie folgt gegeben: $$R = 50 \,\, {\rm \Omega}; \hspace{0.1cm} C = 0.637 \,\, {\rm \mu F} .$$
Die Induktivität $L$ ist in der Teilaufgabe f) zu berechnen.
Für die Teilaufgabe d) wird vorausgesetzt, dass die Eingangssignale cosinusförmig seien. Die Frequenz $f_x$ ist variabel, die Leistung beträgt jeweils $P_x =$ 10 mW.
Hinweis: Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 1.1.
Fragebogen zu "A1.1 Einfache Filterfunktionen"
Musterlösung
- a) Der komplexe Widerstand der Kapazität $C$ ist gleich $1/({\rm j}ωC)$, wobei $ω = 2πf$ die so genannte Kreisfrequenz angibt. Der Frequenzgang lässt sich nach dem Spannungsteilerprinzip berechnen:
$$H_{\rm A}(f) = \frac{Y_{\rm A}(f)}{X_{\rm A}(f)} = \frac{1/({\rm j}\omega C)}{R+1/({\rm j}\omega C)}=\frac{1}{1+{\rm j \cdot 2\pi}\cdot f \cdot R\cdot C}.$$ Wegen $H_{\rm A}(f = 0) = 1$ kann dies kein Hochpass sein; vielmehr handelt es sich um einen Tiefpass. Bei niedrigen Frequenzen ist der Blindwiderstand der Kapazität sehr groß und es gilt $y_{\rm A}(t) ≈ x_{\rm A}(t)$. Dagegen wirkt der Kondensator bei sehr hohen Frequenzen wie ein Kurzschluss und es ist $y_{\rm A}(t) ≈ 0$.
- b)
- c)
- d)
- e)
- f)
- g)