Aufgabe 1.6Z: Ergodische Wahrscheinlichkeiten
Aus LNTwww
Version vom 29. August 2016, 18:57 Uhr von Nabil (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}} right| Wir betrachten eine homogene stationäre Markovket…“)
Wir betrachten eine homogene stationäre Markovkette erster Ordnung mit den Ereignissen $A$ und $B$ und den Übergangswahrscheinlichkeiten entsprechend dem nebenstehenden Markovdiagramm:
Für die Teilaufgaben a) bis d) wird vorausgesetzt:
- Nach dem Ereignis $A$ folgen $A$ und $B$ mit gleicher Wahrscheinlichkeit.
- Nach $B$ ist das Ereignis $A$ doppelt so wahrscheinlich wie $B$.
Ab Teilaufgabe e) sind p und q als freie Parameter zu verstehen, während die Ereigniswahrscheinlichkeiten $Pr(A) = 2/3$ und $Pr(B) = 1/3$ vorgegeben sind.
Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 1.4. Zur Ergebniskontrolle können Sie das folgende Berechnungstool nutzen:
Fragebogen
Musterlösung
- a)
- b)
- c)
- d)
- e)
- f)
- g)